The Duct Tape of Heroes: Bayes Rule

Vincent D. Warmerdam
GoDataDriven + koaning.io + @fishnets88

Different schools of data

Frequentist

Bayesian Machine
Learning

Today

Textbook Example of Bayes Rule
Introduce Probabilistic Graphical Models in Python
Show when Bayesians statistics shine
Explain Biased Random Search for OR
Probabilistic Approaches for Heroes of the Storm

Discuss that whole frequentist/bayesian thing

Textbook Bayes Rule

The theory of probabilities is
basically just common sense
reduced to calculus.

— Pierre-Simon Laplace

Example of common sense

" P(A,B) P(B|A)P(A)
PUIB) =5 = BB)

count

7500~
5000~
2500~

D.

7500~
5000 -
2500~

7500~
5000 -
2500~

7500 -
5000~
2500~

7500 -
5000 -
2500 -

D-

7500~
5000 -
2500+

7500 -
5000~
2500 -

7500~
5000 -
2500 -

0-
7500 -
5000 -
2500 -

P(E|D). given number of dice, probability of sum of eyes

A textbook example

. . : . 1
There is an epidemic. A person has a probability 100 to have the

disease. The authorities decide to test the population, but the test

: . . 1
Is not completely reliable: the test generally gives 110 people a

positive result but given that you have the disease the probability

65
of getting a positive result is —.
g gap 100

A textbook answer

Let D denote the event of having the disease, let T' denote event of
a positive outcome of a test. If we are interested in finding P(D|T)

then we can just go and apply Bayes rule:

P(T|DP(D 65 o 1
P(D|T): (‘) (): 100 100 %0715

P(T) -

A textbook answer

Let D denote the event of having the disease, let T' denote event of
a positive outcome of a test. If we are interested in finding P(D|T)

then we can just go and apply Bayes rule:

P(T|DP(D 65 o 1
P(D|T): (‘) (): 100 100 %0715

P(T) -

What else can we infer?

Inference : we know P(T'|—D)!

P(T) = P(T N D) + P(T N -D)
— P(T|D)P(D) + P(T|-D)P(~D)

Inference : we know P(T'|—D)!

P(T) = P(T N D) + P(T N -D)
— P(T|D)P(D) + P(T|-D)P(~D)

After calculation:

7

P(T|-D) = 1980

With this knowledge, we can infer even more!

P(TT) = P(TT|D)P(D) + P(TT|~D)P(~D)
/65\2 1/ 7T N2 99
_(ﬁ) * 100 (1980) * 100

339
~ 0.0042 4
93000 0.00423737

P(TTT) — P(TTT\D)P(D) -+ P(TTT\ﬂD)P(ﬂD)
(65)3 1 (7)3 99
— . X | X —
100 100 1980 100

1076657
~ (0.002746294
392040000 0.00274629

One Test

Two Tests

65 1
TT|D)P(D) (m) * 00 16731

o 839 o
P(TT) 839 16780

~ 0.9971

p(piTT) = 2

Three Tests

65] 1
TTT|D)P(D) (m) X100 21532797

- 1076657 -
P(TTT) 076657 ™ 91533140

~ (0.9999

P(D|TTT) = il

What just happened?

Via Bayes Rule, we can infer information about P(D|TTT') even
though we initially only know about P(T'|D).

The trick is that we clearly define the uncertainty that we have and

infer the rest via probability theory. In this case the main cheat was
realizing that the tests are independant of eachother.

Notice something interesting: the same model can have different
data at prediction time and still manage adequate output.

Probabilistic Graphical Models

Probabilistic Graphs!

If we have domain knowledge, we can create a graph like before
that defines dependencies on data. Support for Probabilistic
modelling is growing, also in python!

Let's create a Probabilistic graph in python with pomegrenate. It's
a modest library that has likeable documentation.

Probabilistic Graphs!

Suppose you want to know if today's weather is predicted correctly.
There are three broadcasters.

e Alice is very accurate; 80% correct
e Bob is terrible: 55%
e Claire is alright: 65%

Probabilistic Graphs!

Suppose you want to know if today's weather is predicted correctly.
Each broadcaster tends to present on different days of the week.

e Alice is more weekday; /0% weekday, 10% weekend
e Bob is more weekend: 10% weekday, 65% weekend

e Claire is both: 20% weekday, 25% weekend

Probabilistic Graphs!

Suppose you want to know if today's weather is predicted correctly.

Suppose that during the weekend it is more likely for the sun to
shine.

e given weekend: 80% sunny

e given weekday: 60% sunny

Probabilistic Graphs!

Step 1: Define Probabilities

day of week = pg.DiscreteDistribution(
{'weekday': 5./7, 'weekend': 2./7}

)

who

pg.ConditionalProbabilityTable([

'wee
wee
wee
wee
'wee
'wee

kday'

kend'
kday'
kend'
kday'

kend'

)

9

b

9

b

'Alice', 0.9],
'Alice’, 0.1],
'Bob', 0.35],
'Bob', 0.65],
'Claire’, 0.5],
'Claire’, 0.5]

1, [aay_of_week])

sl = pg
S2 = pcC
S35 = pg
s4 = pg

networ]
networ]
networ]
networ]
networ]

networ!

N AN AN AN AN AN

Step 2: Build graph

.State(day_of week, name="day of week")
.State(who, name="who")

.State(sunny, name="sunny")
.State(correct, name="correct")

= pqg.BayesianNetwork('"Weather: day of week")
.add_states([sl, s2, s3, s4])
.add_transition(sl, s2)

.add_transition(sl, s3)

.add_transition(s?2, s4)

.bake()

Step 3: Infer{ "'who' : '"Alice'}

day of week
"weekend" :0.05405405405405407 ,
"weekday" :0.9459459459459458

who
"Claire" :0.0,
"Bob" :0.0,
"Alice" :1.0
sunny

"false" :0.21081081081081082,

"true" :0.7891891891891892
correct

"false" :0.10000000000000003,

"true" :0.9

Step 3: {'who': 'Bob'}

day of week
"weekend" :0.7222222222222222,
"weekdavy" :90.2777777777777779

who
"Claire" :0.0,
"Bob" :1.0,
"Alice" :0.0
sunny
"false" :0.34444444444444444
"true" :0.6555555555555556
correct

"false" :0.45,
"true" :0.55

Step3:{'who': 'Bob', 'weekend': T}

day of week
"weekend" :1.0,
"weekday" :0.0

who
"Claire" :0.0,
"Bob" :1.0,
"Alice" :0.0
sunny
"false" :0.4,
"true" :0.6
correct
"false" :0.45,

"true" :0.55

Step 3: {'correct': True}

day of week
"weekend" :0.23040604343720494,
"weekday'" :0.769593956562/951
who
"Claire" :0.1841359/733/71105,
"Bob" :0.18696883852691226,
"Alice" :0.6288951841359772
sunny
"false" :0.24608120868744096,
"true" :0.7539187913125589
correct
"false" :0.0,
"true" :1.0

Probabilistic Graphical Models

These types of models are rather powerful and flexible. One of it's

most powerful features is that it can logically handle missing data at
prediction time.

The example I've given here just handles discrete models, but
mathematically you can define any distribution between nodes.

Often coding these problems is the harder part. pomegrenate

currently only offers discrete distributions, not continous ones.
Sampling is an alternative.

When Bayesian Thinking Shines

Learning from Biased Data

Suppose that | have a call-centre.

Learning from Biased Data

Suppose that | have a call-centre.

Suppose we are interested in knowing how long people wait in line.

Learning from Biased Data

Suppose that | have a call-centre.
Suppose we are interested in knowing how long people wait in line.

Suppose we only measure the people in a waiting line who wait for
a very long time (ie; that's when they start to complain).

Learning from Biased Data

Suppose that | have a call-centre.
Suppose we are interested in knowing how long people wait in line.

Suppose we only measure the people in a waiting line who wait for
a very long time (ie; that's when they start to complain).

What can | then say about the waiting time in general? | only
measure a few people and their waiting times and | know that the
waiting times are larger than some time m. | know nothing else!

Translation to models

Waiting lines usually suggest exponential distributions.

1 —\T
P(m\)\)zxe 4

where z Is the waiting time per customer. Higher values of A
correspond to longer waiting times between customers.

Two exponential models

o Exponential Distribution for lambda = {1,2}

0.008
0.006
0.004

0.002

0.000 —

Might feel a bit tricky

How do we find the best value of A while still keeping in mind that
we have a biased dataset?

Might feel a bit tricky

How do we find the best value of A while still keeping in mind that
we have a biased dataset?

BAYES TO THE RESCUE

P()‘|Dbz’a8)

Might feel a bit tricky

How do we find the best value of A while still keeping in mind that
we have a biased dataset?

BAYES TO THE RESCUE

Might feel a bit tricky

How do we find the best value of A while still keeping in mind that
we have a biased dataset?

BAYES TO THE RESCUE

p()\‘Dbz’aS) _ p(Db’ias‘)‘)p()‘)

X p(Dbz’as ‘)‘)p()‘)

Might feel a bit tricky

How do we find the best value of A while still keeping in mind that
we have a biased dataset?

BAYES TO THE RESCUE

X P(Dpias|A)P(A) = I;p(zi|A)p(A)

0.0030

0.0025

0.0020

00015

0.0010

0.0005

0.0000

BAYES TO THE RESCUE

p()“Dbz'as) X p()‘)Hzp(wz ‘)\)

Exponential Distribution for lambda = 4

10

15

0.0030

0.0025

0.0020

00015

0.0010

0.0005

0.0000

BAYES TO THE RESCUE

p()“Dbz'as) X p()‘)Hzp(wz ‘)\)

Exponential Distribution for lambda = 4

10

15

BAYES TO THE RESCUE

p()“Dbias) X p()‘)Hzp(wz ‘)\)

Exponential Distribution for lambda = 4
0.0030

0.0025
0.0020
0.0015

0.0010

0.0005

0.0000
15

For m = 7.5, the red shows the distribution of interest.

BAYES TO THE RESCUE

What the plot shows via maths, what do we know about z; when

r; > m.

T €
i|A) =1II; 4
! —TA
Z(A) = e “dx

Enough math, time to code!

def p xs given_ Lambda(lambd, m):
XS = np.arange(9, 20, 0.01)
distr = 1.0/lambd * np.exp(-xs/lambd)
distr[xs < m] = 0.000001
return distr/np.sum(distr)

def p x given lambda(x, Llambd, m):
XS = np.arange(9, 20, 0.01)
distr = p _xs_given Llambda(lambd, m)
return distr[xs > x][0]

Constant m, differing .

XS = np.arange(9, 20, 0.01)

Lt.plot(xs, p Xxs _given_ lLambda(3, 4))
.plot(xs, p_xs _given_ Llambda(4, 4))
Lt.plot(xs, p Xxs _given lLambda(/, 4))

T T O
ct
e

00000

00000

00000

00000

00000

00000

Differing m, constant A.

XS = np.arange(9, 20, 0.01)

Lt.plot(xs, p Xxs _given_ lLambda(4, 4))
.plot(xs, p xs given_ Llambda(4, 6))
lt.plot(xs, p_xs _given lambda(4, 8))

0.0030
0.0025
0.0020 \\\\\\\\\\\\\\\

T T O
ct
e

0.0015
0.0010
0.0005 \
0.0000
0 5 10 15

Combining it all

def p d given lambda(data, lambd, m):
res = 1
for d in data:
res ¥= p x _given Llambda(d, lambd, m)
return res

Different data, A on x-axis.

m =4

Lambdas = np.linspace(0.1, 10, 100)

plt.plot(lambdas, [p_d given_ Llambda([/,6,8], L, m) for L in lambdas])
plt.plot(lambdas, [p_d given_ Llambda([5,6,6], L, m) for L in lambdas])

12 '©
1.0
08
06
04

02

00

What have we just done?

We have shown a way to derive a statistic from biased data using
bayes rule. Not only does it allow us to give the most likely A but it

even allows us to talk about the variance of this statistic given the
data available.

Test

Let's simulate our own data and confirm that this method works.

m =6

true L =1

data = np.random.exponential(true L, N)
data = data[data > m]

We vary N to to investigate the effect of having many points in the
data array.

Different datasize

0035
0.030
0025
0.020
0015
0010

0.005

0.000 J

0 2 4 6 8

array([6.092/7787, 6.38649219])

0.045

0.040

0035

0.030

0025

0020

0015

0010

0.005

0.000

0

_J

Different datasize

2

array([6.30177249,

6.67/389008,

6 8

8.7/0951343, 6.04451668,
6./657/8963, 6.410/5569])

10

12

007

0.06

0.05

004

003

002

0.01

0.00
00

05

1.0

Different datasize

1.5 20 25

A=1m=2,|D| =122

30

35

40

Inspiration for Optimisation Algorithms

Applications in OR

Sometimes bayes rule can help with a parameter search. Let's take
a simple example; finding the largest triangle in a 1x1 square.

This might seem like a silly example because we already know the
answer beforehand. This is a good property for now because we
want to know how an algorithm performs compared to the best
possible solution.

Let's start with random

rand vals = np.random.rand(100000, 6)

= plt.hist([shoelace(i) for i in rand _vals], 30)

—— histogram of area sizes of random points

16000
14000
12000
10000
8000
6000
4000

2000

0
0.0 0.1 0.2 0.3 04

0.5

Learning step

Let X be the coordinates of the triangle, let A be the area. The plot
we've just shown was the distribution of A. Effectively we've just
sampled from this distribution;

p(A) = / p(A|X)p(X)dz

Learning step

Let's now turn it over itself. Let's try to find this distribution:
p(X[|A > m)

If we pick m such that we have enough points to learn a
distribution from but large enough to be discriminate from uniform

then we might be able to update our belief of what good
allocations to this problem might look like.

Yl

Learning step

This Probabilistic approach allows us to learn many things from just
sampling!

We've just shown p(X|A > m), if we sample new coordinate

points from this distribution, what does the new area histogram
look like?

18000

16000

14000

12000

10000

8000

6000

4000

2000

Before

histogram of area sizes of random points

03

04

0.5

After

histogram of area sizes of biased points

5000

4000

3000

2000

1000

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Next steps

We can repeat the same idea until some form of convergence. Note
that m can be chosen in automatic fashions as well, ie. m = A.

The cool bonus with these algorithms is that we can use inference
on our simulated data to learn more about the nature of our
optimisation problem.

You may notice a similarity with genetic algorithms here.

Inspiration for Feature Engineering

Can we predict game outcomes?

| only know what each team got for characters. | may assume that
some form of balancing already occured beforehand.

Problem: | only have 500.000 games in my dataset.
C x n’(n—1)*(n—2)*(n—3)*(n — 4)* =~ O(n'?).

If we only have 6 heroes, search space consists of 518,400 possible
allocations. The dataset dates when n = 36, though currently
n = 48. Problem!

Can we predict game outcomes?

A lot of machine learning models are expected to fail here. We have
/2 columns out of which every row will only have 10 items filled in.

This dataset will be sparse even for random forests/deep neural
nets.

Instead of trying hard to create features that might preform well,

let's apply a little bit of domain knowledge to help us out
Probabilistically.

@,

Clean model representation

density

Combining Priors

placing all 25 combinations

150 -

100 -

value

Alternative model

11,22 € 1A, 71,72 € IB

Ensemble, Bayesian Convolution?

Conclusion by Comparing Schools

Different schools of data

Professionals as well as students often suggest to me that this way
of Probabilistic thinking comes across as very new, if not different.

e no confidence intervals
* no p-values
 no talk about statistical significance

 no hypothesis tests

Different schools of data

Frequentist

Bayesian Machine
Learning

Where is your uncertainty?

All models are wrong. Some models are useful.

— Science

 Are you unsure about the data and are you trying to find the best
single estimator to summerise this?

e Are you unsure about the model and do you accept the data to
be the only truth available?

 Are you willing to ignore all uncertainties when your black box
model performs very well against a lot of test sets?

How would you handle a panda?

import matplotlib.image as mpimg
panda = mpimg.imread('panda-face.png')

100

200

Some say the average panda is grey

20

Some describe the uncertainty of color

0000

80000

70000

60000

30000

40000

30000

20000

10000

Others have this black box ...

... with awesome test set performance.

Never let your school get in the way
of your education.

— Mark Twain

That's all folks

Thanks for listening!

Intermezzo

Those graphs were pretty, weren't they?

Also, did you think I did all those calculations by hand?

Graphs were made with daft

from matplotlib import rc
import daft

rc("font", family="serif", size=12)
rc('"text", usetex=True)

pgm

pgm.
pgm.
pgm.
pgm.
pgm.

= daft.PGM([5, 2.7], origin=[1.15, ©.65])

add node(daft.Node("D", r"D", 3, 3, aspect=1.8))

add node(daft.Node("T 1", r"$T 1%$", 2, 2, aspect=1.2))
add edge("D", "T 1)

render()

figure.savefig("illnessl.png", dpi=150)

implifying calculations with SymPy!

Main Page Download Documentation Support Development Donate | Online Shell

Python console for SymPy 0.7.6 (Python 2.7.5)

Log In
These commands were executed:
>>> from __ future import division
>>> from sympy import *
>>> x, y, 2z, t = symbols('xy z t')
>>> k, m, n = symbols('k m n', integer=True)
>>> f, g, h = symbols('f g h', cls=Function) About this of
Documentation can be found at http://docs.sympy.org/0.7.6. SymPy Live is SymPy rt
>>> simplify((1/100 - 65/10000)*100/99) Google App Engine.
7 This is just a regular Py
1980 with the following com

executed by default:

>>> from __ future ir
>>> from sympy import
>>> x, y, 2, t = symbc

>>> k, m, n = symbols|
>>> f, g, h = symbols|
>>> Please note that the Gi

Engine has a timeout ¢
for commands, and th:
quirk in Safari on iOS, 1

--- iOS is 58 seconds.

The thumbtack icon is
m } Android Action Bar Ico
used under the terms’
the materials in this fili
restriction to develop)
to use in your apps."

Appendix: links to resources

 my blog will have slides at the bottom

e blog post on model selection

koaning.io
http://koaning.io/bayes-means-clustering.html

