No Blender Installed?

Find a buddy!

Pair up & make a friend!

@blender’“

Much Visual, Very 3D, Many Python.

Vincent D. Warmerdam, GoDataDriven, @fishnets88 - koaning.io

whois

t

vincen

ry
ndexr sto
le

my b

Today

We will say no to Clicky-Clicky and say yes to Typy-Typy.

We will generate a lot of cubes, make pretty renders and even
animate some cubic explosions. We will do this by following python
examples and lots of hacking freedom.

We will spend some time talking about the Ul and then we will only
talk about code. You will code more than | will talk.

You will need a recent version of blender, a text editor and
creativity. Try to pair up if this is a problem!

Today

explain basic blender ui (15 min max!)
show how to do code in blender

get creative with cubes

introduction to recursive art

maths and trees

advanced recursive art patterns
animation + physics

rendering with blender code

Some Basic Movement

Try the following:

e moving with scrollwheel
e CRTL + scrollwheel

e SHIFT + scrollwheel

Basic editing

What do you think the a, s, r and g buttons do?

Useful

ALT + F: quick view change
RMB: select a single object in the view

MMB: rotation

space: quicktype shortcut

Blender Ul Got-Ya's

We will be opening View windows. Closing them is an annoying Ul-
lesson. Thankfully, we have blender.stackexchange to the rescue.

http://blender.stackexchange.com/questions/5631/how-to-close-view-windows

Assignment!

Add some cubes.

You can do this by finding the appropriate button or via SPACE.

Why code 3D

Can't we sculpt by hand?

Counter argument: procedural generation.

https://www.youtube.com/watch?v=xJZyXqJ6nog

Button = Code

This is something that makes blender very cool.
Every button in Blender runs code.

If you want the code that is run, just hover your mouse over it and
you'll see the code.

To share code

It will be useful for us to share code.

Please go to this website.

https://codeshare.10/KHDue

| will paste all my code there, please do not delete it.

Python Console

Blender Render &y @

User Persp i All Scenes

Timeline
Graph Editor
Dope Sheet
NLA Editor

UV/Image Editor
Video Sequence Editor
- Movie Clip Editor
Text Editor
=) Node Editor
Logic Editor

> Properties
Outliner

<100+)
Qj User Preferences

Info

File Browser letravali ¥

Python Console

v overwrite

(1) Cube

@ ObjectMode 7 @ 7 % J4 “ Global

No Sync

How today will work.

We will write scripts that generate scenes and run them in Blender.

We will only do basic things today, mainly with cubes. Once you get
the hang of it you can get creative with things.

How to run a python script from blender;

filename = "some path/file.py"
exec(compile(open(filename).read(), filename, 'exec'))

Note: to autocomplete in the terminal press CTRL+SPACE, not TAB.

What does this code do?

bpy.ops.mesh.primitive cube add(radius=1, location = (0,0,0))

. OpS.
. OpS.
. OPS
. OPS

mes
mes

.MES
.MES

5 RS RS R

What does this code do?

.primitive_cube add(radius=4,
.primitive cube add(radius=3,
.primitive cube add(radius=2,
.primitive cube add(radius=1,

lLocation
Location
Location

Llocation

(0,0,0))

(10,0,0))
(20,0,0))
(30,0,0))

Dude, Remove these!

def delete all():
bpy.ops.object.select all(action="'SELECT')
bpy.ops.object.delete(use _global=True)

delete all()

What does this code do?

numcubes = 6
rcubes = 0.5
for x in range(numcubes):
for y in range(numcubes):
for z in range(numcubes):
bpy.ops.mesh.primitive cube add(
radius=rcubes, location = (X,vy,Zz)

)

What does this code do?

import math

def f(x,y):
return 5*sin(x/15.0*math.pi) + 5*¥cos(y/15.0*math.pi)

numcubes = 8

for x in range(-numcubes,numcubes):
for y in range(-numcubes,numcubes):
bpy.ops.mesh.primitive cube add(
radius=0.2, location = (X,vy,f(x,y))

)

Assignment, 15 mins.

Use the math library and create a cool math plot.

Edit Cubes

We'll code things just like how you would manually click things. After
creating an object you can edit it's properties.

import numpy as np

c = bpy.data.objects["Cube"]

c.scale = (2,1,1)

c.rotation _euler = (np.pi/4, np.pi/4, np.pi/4)
c.location = (1,2,3%)

There are many other properties to set like material but we'll get to those
later.

Hindsight
If you know beforehand what you'll draw then this should work. If

you don't then you may want to edit things in hindsight.

for item in bpy.data.objects:
print(item)

Alternatively you can also edit properties as you're creating objects.

Something cool: Recursion!

Do we know what recursion is?

Assignment: Clean up this code and play!

def new_cube(old loc, direction, rad, dimmer):
res = []
for i in [0,1,2]:
res.append(old_Lloc[i] + direction[i]*dimmer + 2 * direction[i]*rad)
return [rad*dimmer,res]

def rec(cube, depth):

if depth ==
return None

else:
bpy.ops.mesh.primitive cube add(

radius=cube[0], location = cube[1]

)
print(cube)
rec(new_cube(cube[1],(1,0,0),cube[0],0.4) , depth + 1)
rec(new_cube(cube[1],(0,1,0),cube[0],0.4) , depth + 1)
rec(new_cube(cube[1],(0,0,1),cube[0],0.4) , depth + 1)
rec(new_cube(cube[1l],(-1,0,0),cube[0],0.4) , depth + 1)
rec(new_cube(cube[1l],(0,-1,0),cube[0],0.4) , depth + 1)
rec(new_cube(cube[1l],(0,0,-1),cube[0],0.4) , depth + 1)

rec([1,(0,0,0)],0)

What does this code do?

def randdir():
choices = [(1,0,0),(0,1,0),(0,0,1),(-1,0,0),(0,-1,0),(0,0,-1)]
return random.choice(choices)

def new cube(old loc, direction):
res = []
for 1 in [0,1,2]:
res.append(old _loc[i] + direction[i])
return tuple(res)

cube = (0,0,0)

for i in range(500):
cube = new_cube(cube,randdir())
bpy.ops.mesh.primitive cube add(radius=0.5, location = cube)

Best Recursive Example

How to build this in Blender

The hard part is that you'll need a bit of math to create an
appropriate helper function.

s

-

A X

How to build this in Blender

_ P1t P2
m =
2
L = \/&cz + 8y® + 62°
o= arctan(d—m)
— 5
0z

B = arctan(

5T

What does this code do?

def cylinder between(x1, v1, zl1, x2, vy2, z2, r):

dx = x2 - x1
dy = y2 - vyl
dz = z2 - z1
dist = np.sqgrt(dx**2 + dy**2 + dz**2)
bpy.ops.mesh.primitive cylinder_ add(

radius = r,

depth = dist,

Location = (dx/2 + x1, dy/2 + yl, dz/2 + zl1)
)
phi np.arctan2(dy, dx)
theta = np.arccos(dz/dist)
bpy.context.object.rotation _euler[1] theta
bpy.context.object.rotation _euler[2] = phi

What does this code do?

def branch(origin, depth = 1):
if depth > 10:
return 9
X,y,Z = origin
X new = x + np.random.normal(9, 2, 1)
vy new = vy + np.random.normal(@, 2, 1)
Z new = z + np.random.uniform(2, 10, 1)
cylinder between(x,y,z,X new, y new, z new, r = 1)
if np.random.random() < 0.4:
branch((x _new, y new, z new), depth = depth + 1)
branch((x _new, y new, z new), depth = depth + 1)

Assignment

Wonder what the downside of this is while Vincent uploads the code.

def branch(origin, depth = 1):
if depth > 10:
return ©
X,Vy,Z = origin
X _new = X + np.random.normal(@, 2, 1)
y new = y + np.random.normal(@, 2, 1)
Z new = z + np.random.uniform(2, 10, 1)
cylinder between(x,vy,z,Xx new, y new, z new, r = 1)
if np.random.random() < 0.4:
branch((x _new, y new, z new), depth = depth + 1)
branch((x_new, vy new, z new), depth = depth + 1)

Alternative Recursion

Let's define how points are drawn in a two dimensional system.

T, 1 = sin(a X y,) + cos(b X x,) — cos(c X z,)

Ynr1 = sin(d X x,) + cos(e X y,) — cos(f X z,)
Znt1 = 2n + 0.1

There's a lot of variables here, but what figure would we draw?

What would these points look like in 2d?

r
N i
N\ ¥ 8
{ - \‘
S— ~,
— 1
L' 4 _' ——
» Y
\- R

RSV

RAAILL SV T
/1 Ill“‘.“\‘\\"\ \.'“

T .. » ’ i\'y
o ?ﬂ*{“v ;\‘:.\._:\A N
. fl‘i.“l‘\\\‘\\\'\\\:.' X

A
N \'\.\'.

Alternative Recursion

Let's change the formulas a bit.

T, 1 = sin(a X y,) + cos(b X x,) — cos(c X z,)
Ynr1 = sin(d X x,) + cos(e X y,) — cos(f X z,)

2n+1 — LnlYn

I've only changed z,, 1.

Alternative Recursion

Let's change the formulas a bit.

T, 1 = sin(a X y,) + cos(b X x,) — cos(c X z,)

Ynr1 = sin(d X x,) + cos(e X y,) — cos(f X z,)

Zni1 = arctan(x, + y,)

I've only changed z,,. 1.

-t st ap g

- ".\-‘-‘ -~
N

Alternative Recursion

Let's change the formulas a bit.

T, 1 = sin(a X y,) + cos(b X x,) — cos(c X z,)

Ynr1 = sin(d X x,) + cos(e X y,) — cos(f X z,)

I've only changed z,, .

L 3 . < s
sl SN
gy 5 .

Yo

P

Alternative Recursion

Different formulas cause different styles of "art".

Certain values of a, b, ¢, d, e, f will converge to something pretty
while others can feel a bit random.

We are able to draw pretty images with a very basic building block:
the pixel.

Can we build this in 3d as well?

Proposal

How about we build some system like;

a X y,) + cos(b X z,) + cos(c X t,)

Lntl1 — lIl(

Yni1 = sin(d X)
Zni1 = sin(g X ;)
the1 =ty + 0.1

Variations are also possible.

cos(e X z,) 4+ cos(f X t,)

+ cos(h X vy,) + cos(i X t,)

Proposal

Also, this is 3d! We can also draw other dimensions.

Ln+1
Yn+1
Zn+1

tn+1

sin(a X y,) 4+ cos(b X z,) + cos(c X t,)

(
sin(d X x,,)

cos(e X z,) + cos(f x t,)

sin(g X x,) -
tn, + 0.1

- cos(h X yp) + cos(i X t,)

Sni1 = (sin(t,11) +1) X j

Assignment: Build This!

Sharing work: sketchfab

() Sketchfab

https://sketchfab.com/

Animation

Blender can render animations for us. So let's create an animation.

Let's first see a cool example of what you can do here and here.

https://www.youtube.com/watch?v=gebt_FBZeRQ
https://www.youtube.com/watch?v=InF6LoyJH2Q

Physics

after

v’

Animation

Blender has a physics engine so how about we do something with
falling objects/explosions?

Assigning Physics

You'll need to specify a falling object to be an "activate rigid body".

bpy.ops.mesh.primitive cube add(radius=1, location = (0,0,10))
bpy.ops.rigidbody.object add()
bpy.context.active object.rigid body.type = "ACTIVE'

You'll need to specify a static object to be an "passive rigid body".

bpy.ops.mesh.primitive plane add(radius = 10, location = (0,0,0))
bpy.ops.rigidbody.object add()
bpy.context.active object.rigid body.type = 'PASSIVE'

Experiment

Generate many cubes on the same place and see what happens.

bpy.ops.mesh.primitive cube add(radius=1, location = (0,0,10))
bpy.ops.rigidbody.object add()
bpy.context.active object.rigid body.type = "ACTIVE'

Why does this happen?

Falling Tower/Exploding Cubes

Vincent will now copy and paste code into codeshare from his
blogpost. He will walk you through the code: you can play with it.

The idea is to construct a large tower of many small cubes that will
fall on a plateau.

If the computer crashes: draw less cubes!

http://koaning.io/python-blender-gif.html
http://koaning.io/python-blender-gif.html

Interface

Presets

Editing

Trackball

Blender

b
P
P
b
b
b
b
b
b
b
b
P
P
P
2

Protip

Go to user Settings.
Select "input".
Click "Emulate Numpad"

You'll then have an awesome shortcut
available to you.

You can move the camera to your
viewpoint with: CTRL+ALT+O0.

Rendering

.

4,

. 2O O O ©
S EE SIS

i

4,
L)

Once you have a nice animation, you'll
probably want to render it. Make sure
you've got a lightsource and a camera
ey Ll then press the render button.

art Frame:

! Ena Erame:

% _<Frame Step:

24 fps

Mitchell-Netravali

« Size:

dz = z2 - z1
dist = np.sqrt(dx**2 + dy**2 + dz**2)
bpy.ops.mesh.primitive cylinder add(

Rendering

4
=

_B'])OOOO
D EI S

4,
L)

You'll have the option of generating
Images or to generate a video. These will
be usually be placed in /tmp/.

Render Presets

Mitchell-Netravali

dz = z2 - z1
dist = np.sqrt(dx**2 + dy**2 + dz**2)
bpy.ops.mesh.primitive cylinder add(

Rendering

Alternatively, you can use this code.

these are the render settings
bpy.data.scenes['Scene'].render.engine
bpy.data.scenes|['Scene'].cycles.samples
bpy.data.scenes['Scene'].frame_end = 100
bpy.data.scenes['Scene'].render.fps = 100
bpy.context.scene.render.resolution x = 600
bpy.context.scene.render.resolution vy = 400

'CYCLES'
10

this command signals the actual render
bpy.ops.render.render(animation=True, use viewport=True)

Thanks

Here's some links for those interested
e my blog, blogpost 1

e my blog, blogpost 2

e pretty good tutorial

e sketchfab

e blender main website

e blender documentation

http://koaning.io/python-cubes-in-blender.html
http://koaning.io/python-blender-gif.html
http://www.mertl-research.at/ceon/doku.php?id=software:kicad:3d_package_with_blender
https://sketchfab.com/
https://www.blender.org/
https://www.blender.org/api/blender_python_api_2_77_1/

