
Balancing Heroes and Pokemon
Streaming/Bayesian Systems for Online Ranking

Fokko Driesprong & Vincent D. Warmerdam - GoDataDriven
Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 1

we are fokko and vincent

• We do not work for Blizzard

• We do not work for a Nintendo

• We do not work for Microsoft [we're not demoing trueskill]

• Fokko does Engineering

• Vincent does Algorithms

• This project started out as a mere nerd snipe.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 2

https://xkcd.com/356/

usually ML is applied as a lambda

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 3

but it could be trained while being applied

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 4

streaming may be preferable

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 5

we will give an example in this talk

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 6

problem at hand

This is our enterprise usecase.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 7

problem at hand

• we need to estimate player skill somehow

• we need to learn this from a stream of match outcomes

• we don't want to wait for a batch algorithm
Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 8

let's talk solutions

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 9

a simple solution

The way to make it work is to realize that the skill of a player is not
a single number, rather a distribution of belief of the players skill.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 10

a simple solution

The next step is to realize that you can combine two one-player
beliefs of skills into a one two-player belief. A prior of belief.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 11

a simple solution

After a game has been played the two dimensional prior is
updated depending on what the data shows us.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 12

a simple solution

We take a margin over the diagonal and any probability mass from
the region that disagrees with the match outcome.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 13

a simple solution

We map the resulting probability back to each player. These two
players now have an updated belief on skill.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 14

a simple simulation: two equal players

There are some benefits we get for free. Try it out here.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 15

http://koaning.io/mini-trueskill-demo.html

a simple simulation: two unequal players

We may learn a lot, or very little. #informationtheory

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 16

a simple simulation: many players

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 17

test of functionality: pokemon!

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 18

test of functionality: pokemon!

We got our infromation on pokemon from;

Nowadays you can also find the dataset on kaggle.
Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 19

https://www.kaggle.com/abcsds/pokemon

test of functionality: pokemon!

If you google around fan reddits you can find information on how
many turns one pokemon can outlast the other.

Simply said, we can use this to simulate game outcomes.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 20

test of functionality: pokemon!

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 21

test of functionality: pokemon!

 name mle name mle

128 Magikarp 0.011007 597 Ferrothorn 0.916377

112 Chansey 0.013735 425 Drifblim 0.917240

348 Feebas 0.015845 644 Zekrom 0.919065

171 Pichu 0.019108 537 Throh 0.921175

291 Shedinja 0.020473 482 Dialga 0.928502

439 Happiny 0.026763 149 Mewtwo 0.951472

241 Blissey 0.037009 483 Palkia 0.953823

172 Cleffa 0.042802 288 Slaking 0.956629

234 Smeargle 0.048575 375 Metagross 0.957383

49 Diglett 0.054010 492 Arceus 0.957729

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 22

the general maths of all this

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 23

the general maths of all this

Designing the algorithm became a whole lot easier when we
admitted that we want to quantify our uncertainty. This means we
must work with distributions as our state, not mere statistics.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 24

the general maths of all this

Designing the algorithm became a whole lot easier when we
admitted that we want to quantify our uncertainty. This means we
must work with distributions as our state, not mere statistics.

This really fits the bayesian mindset.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 25

Bayesians to the rescue

We can estimate parameters by considering;

Let's consider three independant points of data that we've seen;
. Then bayes rule states that

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 26

Bayesians to the rescue

Everybody notice we kind of get streaming for free?

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 27

bayesians to the rescue

Any ML algorithm that can be updated via
is automatically a streaming algorithm for ML because it forces
the recursive relation;

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 28

bayesians to the rescue

You can even have models that change over time appropriately.

Know that this is not a free lunch though. You may still need to
deal with numerics in the streaming situation, but a lot of
algorithms can be streamified via this approach.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 29

we just gave an example of this

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 30

a harder problem: heroes of the storm

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 31

a harder problem: heroes of the storm

This was our enterprise usecase before.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 32

a harder problem: heroes of the storm

This is our even more enterpise usecase now.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 33

a harder problem: heroes of the storm

• we need to update player skills after a team match

• we now also need to assign teams as well

• we need to worry about character imbalance as well
Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 34

proposal solution architecture

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 35

proposal solution architecture
There are three main steps to consider now;

• how to map a skill to a que

• how to assign teams from a que

• how to update indivudual skill after a team fight

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 36

teamfights: skill to que

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 37

teamfights: assigning teams

Predicting team imbalance with ML is tricky. There are lot's of
combinations of heroes () that are possible.

This makes it hard to make some sort of machine learning model
that can predict what team might win. Is there an easy hack?

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 38

teamfights: assigning teams

We have some domain knowledge; types of heroes.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 39

teamfights: assigning teams

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 40

teamfights: assigning teams

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 41

teamfights: assigning teams

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 42

teamfights: updating skill

• Each game is a single ten-dimensional distribution of skill. We
can cut where appropriate problamatic when our internal
state is a histogram.

• Cheat a bit by summarising all opponent histogram into a single
histogram and pretend that the player was battling this person

• Have the data scientist apply maths to make an update rule
which involves proper distributions instead of histograms
mathematical complexity maintenance risk

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 43

teamfights: updating skill

- Each game is a single ten-dimensional distribution of skill. We
can cut where appropriate problamatic when our internal state
is a histogram.

• Cheat a bit by summarising all opponent histogram into a single
histogram and pretend that the player was battling this person

- Have the data scientist apply maths to make an update rule
which involves proper distributions instead of histograms
mathematical complexity maintenance risk

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 44

teamfights: updating skill

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 45

teamfights: updating skill

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 46

teamfights: updating skill

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 47

total architecture

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 48

things to like...

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 49

things we like

• We have seperate functions in our architecture. The team
selection step needs no notion of how many queues there are.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 50

things we like

• We have seperate functions in our architecture. The team
selection step needs no notion of how many queues there are.

• There are a lot of hyperparameters we can tune. This is nice
because we know our model to not be perfect. Having degrees
of freedom in hyperparameters means we can do tuning. This
keeps the algorithm flexible but also requires us to perform
some form of grid search first.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 51

things we like

• We have seperate functions in our architecture. The team
selection step needs no notion of how many queues there are.

• There are a lot of hyperparameters we can tune. This is nice
because we know our model to not be perfect. Having degrees
of freedom in hyperparameters means we can do tuning. This
keeps the algorithm flexible but also requires us to perform
some form of grid search first.

• We can scale this, should we get more users playing our game.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 52

let's talk flink

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 53

managed state

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 54

parse the json to a case class
stream
 .map(line => JsonUtil.parseJson[Player](line))
 .map(new SamplePlayerSkill)
 .keyBy(_._1)
 .countWindow(LocalConfig.playersPerTeam * 2)
 .apply(new DetermineTeam)
 .map(new PlayGame)
 .flatMap(new ComputeNewPlayerSkill)
 .keyBy(_.player.id)
 .asQueryableState(LocalConfig.keyStateName, reduceStateDescriptor)

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 55

if exists, get skill of the player
stream
 .map(line => JsonUtil.parseJson[Player](line))
 .map(new SamplePlayerSkill)
 .keyBy(_._1)
 .countWindow(LocalConfig.playersPerTeam * 2)
 .apply(new DetermineTeam)
 .map(new PlayGame)
 .flatMap(new ComputeNewPlayerSkill)
 .keyBy(_.player.id)
 .asQueryableState(LocalConfig.keyStateName, reduceStateDescriptor)

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 56

grab appropriate que bucket as the key
stream
 .map(line => JsonUtil.parseJson[Player](line))
 .map(new SamplePlayerSkill)
 .keyBy(_._1)
 .countWindow(LocalConfig.playersPerTeam * 2)
 .apply(new DetermineTeam)
 .map(new PlayGame)
 .flatMap(new ComputeNewPlayerSkill)
 .keyBy(_.player.id)
 .asQueryableState(LocalConfig.keyStateName, reduceStateDescriptor)

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 57

wait for bucket to have 10 players
stream
 .map(line => JsonUtil.parseJson[Player](line))
 .map(new SamplePlayerSkill)
 .keyBy(_._1)
 .countWindow(LocalConfig.playersPerTeam * 2)
 .apply(new DetermineTeam)
 .map(new PlayGame)
 .flatMap(new ComputeNewPlayerSkill)
 .keyBy(_.player.id)
 .asQueryableState(LocalConfig.keyStateName, reduceStateDescriptor)

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 58

determine the teams of these players
stream
 .map(line => JsonUtil.parseJson[Player](line))
 .map(new SamplePlayerSkill)
 .keyBy(_._1)
 .countWindow(LocalConfig.playersPerTeam * 2)
 .apply(new DetermineTeam)
 .map(new PlayGame)
 .flatMap(new ComputeNewPlayerSkill)
 .keyBy(_.player.id)
 .asQueryableState(LocalConfig.keyStateName, reduceStateDescriptor)

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 59

simulate the game
stream
 .map(line => JsonUtil.parseJson[Player](line))
 .map(new SamplePlayerSkill)
 .keyBy(_._1)
 .countWindow(LocalConfig.playersPerTeam * 2)
 .apply(new DetermineTeam)
 .map(new PlayGame)
 .flatMap(new ComputeNewPlayerSkill)
 .keyBy(_.player.id)
 .asQueryableState(LocalConfig.keyStateName, reduceStateDescriptor)

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 60

map the game outcome to the player
stream
 .map(line => JsonUtil.parseJson[Player](line))
 .map(new SamplePlayerSkill)
 .keyBy(_._1)
 .countWindow(LocalConfig.playersPerTeam * 2)
 .apply(new DetermineTeam)
 .map(new PlayGame)
 .flatMap(new ComputeNewPlayerSkill)
 .keyBy(_.player.id)
 .asQueryableState(LocalConfig.keyStateName, reduceStateDescriptor)

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 61

group player id; hash to the correct node
stream
 .map(line => JsonUtil.parseJson[Player](line))
 .map(new SamplePlayerSkill)
 .keyBy(_._1)
 .countWindow(LocalConfig.playersPerTeam * 2)
 .apply(new DetermineTeam)
 .map(new PlayGame)
 .flatMap(new ComputeNewPlayerSkill)
 .keyBy(_.player.id)
 .asQueryableState(LocalConfig.keyStateName, reduceStateDescriptor)

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 62

fold the new state into the current state
stream
 .map(line => JsonUtil.parseJson[Player](line))
 .map(new SamplePlayerSkill)
 .keyBy(_._1)
 .countWindow(LocalConfig.playersPerTeam * 2)
 .apply(new DetermineTeam)
 .map(new PlayGame)
 .flatMap(new ComputeNewPlayerSkill)
 .keyBy(_.player.id)
 .asQueryableState(LocalConfig.keyStateName, reduceStateDescriptor)

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 63

code where most things happen
stream
 .map(line => JsonUtil.parseJson[Player](line))
 .map(new SamplePlayerSkill)
 .keyBy(_._1)
 .countWindow(LocalConfig.playersPerTeam * 2)
 .apply(new DetermineTeam)
 .map(new PlayGame)
 .flatMap(new ComputeNewPlayerSkill)
 .keyBy(_.player.id)
 .asQueryableState(LocalConfig.keyStateName, reduceStateDescriptor)

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 64

time for demo

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 65

main issue: numeric stability of teams

Above is the 1v1 convergence, exactly the same as pokemon.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 66

main issue: numeric stability of teams

This is the 2v2 convergence, more jitter, but converges.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 67

main issue: numeric stability of teams

This is the 5v5 convergence. Ai caramba.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 68

workflow

You may have noticed our workflow relies partly on jupyter. If we
did not visualise our logging we would have been left in the dark.

We prefer logging to a file and loading that into jupyter to
elasticsearch + kibana. We need a flexible plotting engine and
kibana is a bit limited.

Without flexible visualisation you're going to get stuck
understanding your numerical system.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 69

workflow

It is hard to understand bugs. There may be an error in the code, in
the maths or in a hyperparameter.

For example. We do some smoothing to ensure that our posterior
histogram never has a 0 value. You really want this because
otherwise a user can never have a change in their skill level. Turns
out that the smoothing parameter has a huge effect.

We can demonstrate this with our player simulations.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 70

smoothing factor = 0.00001

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 71

smoothing factor = 0.0001

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 72

smoothing factor = 0.001

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 73

best practices

It is great to have degrees of freedom, but the parameter tuning is
a hard requirement with this system and things definately can go
wrong if you're not careful.

Not all errors are numeric though. Some errors exist because of
the fact that distributed streaming needs to be approached by a
different mindset.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 74

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 75

best practices

When debugging, maybe focus on logging from scala such that
you can easily review this data in a jupyter notebook. Proper
visualisation will be a saving grace. You may need more than
simple timeseries charts though.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 76

best practices

When debugging, maybe focus on logging from scala such that
you can easily review this data in a jupyter notebook. Proper
visualisation will be a saving grace. You may need more than
simple timeseries charts though.

When debugging, be extremely scientific. Eliminate variables with
unit tests until you're absolutately sure what is going wrong.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 77

best practices

When debugging, maybe focus on logging from scala such that
you can easily review this data in a jupyter notebook. Proper
visualisation will be a saving grace. You may need more than
simple timeseries charts though.

When debugging, be extremely scientific. Eliminate variables with
unit tests until you're absolutately sure what is going wrong.

Confirming that 1v1 teams and 2v2 teams worked helped us
understand how to improve 5v5 games.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 78

end result

Our final solution, after tweaking hyperparameters by hand showed
this behavior. Good enough for our demonstration purposes
because this is a hobby project. Still needs work.
Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 79

main problem: no typical scheduling problem

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 80

conclusions

You can have machine learning models that learn in a streaming
setting if you appropriately apply bayes rule. You need to be
mindful of numerics though.

Having distributed state in flink in great, it allows for a stack with
less moving parts and helps you scale.

When making such a system, please consider prototyping
assumptions and heuristics. Our next iteration will focus on this.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 81

thanks for listening
Code of this project is on github.

Slides will also become available.

Feel free to reach out to us via twitter: fokko & vincent.

Fokko Driesprong [@FokkoDriesprong] Vincent D. Warmerdam - [@fishnets88] - GoDataDriven 82

https://github.com/godatadriven/berlin-buzzwords-balancing-heroes-and-pokemon
https://twitter.com/FokkoDriesprong
https://twitter.com/fishnets88

