
Winning card games
.... with 1000+ CPUs

Vincent Warmerdam & Bas Harenslak

Sushi Go!

2

3

4

Naturally ...

... this got me thinking.

I can use algorithms!

5

Naturally ...

This is where our story starts.

The goal:

1. Find a helpful algortihm
2. If need be, "borrow" my boss'

creditcard for cloud
resources.

3. Learn from it.
4. ?
5. Profit!

6

Towards a Computer Science Problem

This game can get quite deep, so keep it simple.

— I want to get better at the card game myself without
the aid of a laptop. My girlfriend would justifiedly
consider it cheating if I needed to consult the
terminal at ever decision I need to make.

— So none of that Deep Reinforcement Voodoo.
— I know who I am, I'm bound to overengineer it and

spend way too much time on it anyway.

7

Sushi Go!

8

Sushi Go!

What is the general order of importance for these cards?

cards = ["maki-1", "maki-2", "maki-3", "sashimi",
 "egg", "salmon", "squid", "wasabi", "pudding",
 "tempura", "dumpling", "tofu", "eel", "temaki"]

9

From Cards to Code
The code is pretty easy.

def simulate(order, deck):
 random.shuffle(deck)
 hand_player, hand_opponent = give_hands(deck)
 random.shuffle(hand_opponent)
 table_player, table_opponent = [], []
 while len(hand_player) > 0:
 table_player.append(hand_opponent.pop())
 table_opponent.append(hand_player.pop())
 hand_player, hand_opponent = hand_opponent, hand_player
 return did_player_win(table_player, table_opponent)

10

This Problem, is a Problem.
The problem is big though:

11

This Problem, is a Problem.
The problem is big though:

It's is similar to the travelling salesman problem. The more
cards I need to evaluate, the larger the search space.

I knew this problem was hard but technically, this implies
that winning a cardgame from my girlfriend is NP-HARD.

12

This Problem, is a Problem.
The problem is big though:

Before thinking attempting artificial intelligence via
algorithms though, let's think consider domain
knowledge and common sense.

13

This Problem, is a Problem.
cards = ["maki-1", "maki-2", "maki-3", "sashimi",
 "egg", "salmon", "squid", "wasabi", "pudding",
 "tempura", "dumpling", "tofu", "eel", "temaki"]

14

This Problem, is a Problem.
cards = ["maki-1", "maki-2", "maki-3", "sashimi",
 "egg", "salmon", "squid", "wasabi", "pudding",
 "tempura", "dumpling", "tofu", "eel", "temaki"]

From the game context, I know that

15

This Problem, is a Problem.
This reduces the search space!

Number of combinations now is of before:

16

This Problem, is a Problem.
Number of combinations now is of before:

From an algorithmic perspective, just thinking about the
problem gave us a huge reduction in search space.

People should do this more often. Think before code!

17

This Problem, is a Problem.
Even with the reduction, combinations is
an not a small search space. What makes it worse: every
combination needs plenty of simulations in order for it
to be accurate.

So how would a algorithm work? The problem has many
parallel parts ...

18

Idea of Evolutionary Heuristics.

19

Idea of Evolutionary Heuristics.

20

Idea of Evolutionary Heuristics.

21

Idea of Evolutionary Heuristics.

22

Idea of Evolutionary Heuristics.

23

Idea of Evolutionary Heuristics.

24

Apply! Deploy!
I needed some compute power to do this, since the
search space is very big. So I 'borrowed' my boss'
creditcard and started planning how to scale this with
my dear collegue (and engineer) Bas.

We found a solution ... it is a tool that is often marketed
for other usecases ... but it ended up working very well
for us.

25

So how to get this working in a nice way?

Despite the smaller search space, playing >2 billion
games is require extreme patience. If every simulation
runs for 0.1 second (which is optimistic), it would take:

2_421_619_200 sims * 0.1s =
 4_036_032 minutes =
 67_267 hours =
 2_803 days = 7.68 years

A.I. Caramba!

26

AWS Lambda

"A compute service that lets you run code without
provisioning or managing servers."

27

AWS Lambda

28

AWS Lambda

29

Using your Lambda

30

AWS API Gateway

31

Chalice

https://github.com/aws/chalice

32

Chalice

CLI to (super easy) create applications using AWS
Lambda and API Gateway.

33

Chalice: Hello World

pip install chalice
chalice new-project helloworld
cd helloworld

34

Hello world with Chalice

> chalice deploy

Creating deployment package.
Updating policy for IAM role: helloworld-dev
Creating lambda function: helloworld-dev
Creating Rest API
Resources deployed:
 - Lambda ARN:
 arn:aws:lambda:eu-central-1:<arn>:function:helloworld-dev
 - Rest API URL:
 https://<url>.execute-api.eu-central-1.amazonaws.com/api/

35

Lambda in Chalice code

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/')
def index():
 return {'hello': 'world'}

36

Fire

https://github.com/google/python-fire

37

Fire

import fire

def hello(name):

 return f'Hello {name}!'

def simulate(n_sim=100, sleeptime=3):

 for _ in range(n_sim):

 time.sleep(sleeptime)

if __name__ == "__main__":

 fire.Fire({

 'hi': hello,

 'simulate': simulate

 })

> python myapp.py simulate --n-sim=10

38

Command Line Apps FTW

39

Command Line Apps FTW

40

Awesome, so we have 1000 Lambdas!?

for i in range(2421619200):
 simulate_in_lambda()

41

Concurrency in Python
Concurrency in the stdlib:
* multiprocessing
* threading
* concurrent.features
* asyncio

42

Synchronous example
1 import time
2
3
4 def long_task(i):
5 time.sleep(1)
6 print(f"Processed task {i}")
7
8
9 start = time.time()
10
11 for i in range(5):
12 long_task(i)
13
14 end = time.time()
15 print(f"Completed in {end-start} sec")

43

Synchronous example
Processed task 0
Processed task 1
Processed task 2
Processed task 3
Processed task 4
Completed in 5.018500804901123 sec

44

Asynchronous example
1 import asyncio
2 import time
3
4
5 async def long_task(i):
6 await asyncio.sleep(1)
7 print(f"Processed task {i}")
8
9
10 start = time.time()
11
12 loop = asyncio.get_event_loop()
13 loop.run_until_complete(asyncio.wait([long_task(i) for i in range(5)]))
14
15 end = time.time()
16 print(f"Completed in {end-start} sec")
17
18 loop.close()

45

Asynchronous example
Processed task 0
Processed task 3
Processed task 4
Processed task 1
Processed task 2
Completed in 1.0031728744506836 sec

46

asyncio with aioh!p
1 import aiohttp
2 import asyncio
3
4
5 async def fetch(session, url):
6 async with session.get(url) as response:
7 return await response.text()
8
9
10 async def run():
11 tasks = []
12 async with aiohttp.ClientSession() as session:
13 for i in range(1000):
14 task = asyncio.ensure_future(fetch(session, 'https://api_id.execute-api.eu-central-1.amazonaws.com/api/'))
15 tasks.append(task)
16
17 responses = await asyncio.gather(*tasks)
18 # do something with responses
19
20 loop = asyncio.get_event_loop()
21 future = asyncio.ensure_future(run())
22 loop.run_until_complete(future)

47

Too many coroutines
At some point you might think about calling many many
coroutines.

To prevent clogging up your machine, you need a
Semaphore.

48

Time for some Experimentation

Before running the heuristic we were interested in
benchmarking AWS lambda.

Following experiment:

— deploy a new lambda via chalice that sleeps 1.0s
— send 1000 concurrent requests from command line
— check how long it takes before everything is back

49

50

Small Experiment

51

Turns out, network overhead is real.

 situation 100 1000
 hotel python3.6 wifi 2.5s 40.1s
 hotel python3.7 wifi 2.5s 39.6s
 aws sagemaker py36 1.3s 4.3s

These results suprised me, but they totally make sense.

52

Experimentation

live demo

> python command.py evolve 5 1000 5000
round: 0001/0005
aws time for round was: 20.85956 - received 1000 scores
squd,dumg,tofu,temi,wasi,tema,eggg,mak3,mak2,saln,eell,sasi,mak1,pudg
best score: 2952/5000 local-time: 0.050932s
round: 0002/0005
aws time for round was: 21.223665 - received 1000 scores
squd,mak3,mak2,temi,tofu,pudg,tema,dumg,wasi,saln,mak1,eggg,eell,sasi
best score: 2936/5000 local-time: 0.048676s
round: 0003/0005
aws time for round was: 21.3861 - received 1000 scores
squd,dumg,tofu,temi,wasi,tema,eggg,mak3,mak2,saln,eell,sasi,mak1,pudg
best score: 2960/5000 local-time: 0.045166s
...

53

Amazing!
But really, what's the speedup?
1000CPU = 1000x?
5000CPU = 5000x?
Did we really get that for free!?

54

Let's check the speedup

Theoretically this is impossible, partly because of
Amdahl's Law. The law suggests if percent of the time
your program isn't running all processes in parallel
then the max theoretical speedup will be:

55

Let's check the speedup

 has an speedup of , and .

56

How bad was this for us?

If I just look at the total lambda time and the total local
time then this seemed like a reasonable estimate for .

The good news is that this number is small, but how bad
will the syncing be when we run it with 1000s of cores?

57

How bad was this for us?

58

How bad was this for us?

But it's way worse. Assuming no
network overhead is silly. Even if
we run it on AWS side we should
assume the overhead increases as
the batch size increases.

If we run 9000 lambda's, the
waiting time for all of them is much
larger than when we only run 100.

59

How bad was this for us?

60

Performance improvements

How do we make it faster? We
can't just add more Lambda
resources.

Interesting problem, how does
one scale a genetic/heuristic
algorithm? Can we finally hide
our laptops?!

61

Let's check the speedup

62

Let's check the speedup

63

Let's consider an alternative

64

The red part doesn't scale but it can handle 2000 events per second locally.

65

Other Improvements
There are some other improvements to be mentioned
here too. We just discussed something we can do
algorithmically [the maths] but there's some cloud
buttons we can press too [the cloud engineering].

66

Chalice does a lot of work for you

Chalice is super easy and great, but Lambda over HTTP
comes with limits. Our main problem was with the 30s
timeout of API Gateway.

— Lambda has no direct URL
— You can call a Lambda with boto
— But boto does not do async calls
— You could try aiobotocore library
— But have to write the routing logic yourself

67

What about costs?
Lambda pricing consists of two parts:

— 0.2$ per 1M requests
— 0.000_000_208$ per 100ms of compute

Assuming a single simulation takes 10s.

68

What about costs?
So that's 21$ per 1M requests for Lambda:

API Gateway pricing 3.5$ per 1M requests:

Total: 59,814$
69

What about costs?
If we assume no gateway and algorithm instead of
brute-force.

Not too bad. For this amount of compute a 64 CPU
machine needs to run for 24 hours (which costs 76$).

70

What about costs?

Note that you can also optimise
a bit further by upgrading the
CPU of the function. It costs
more per second, but the
number of seconds goes down.

This makes sense because our
task is very much CPU bound. If
you're IO-bound, maybe don't do
this.

71

cheapest option

round: 0001/0005
aws time for round was: 20.85956 - received 1000 scores
round: 0002/0005
aws time for round was: 21.223665 - received 1000 scores
round: 0003/0005
aws time for round was: 21.3861 - received 1000 scores
round: 0004/0005
aws time for round was: 20.056846 - received 1000 scores
round: 0005/0005
aws time for round was: 20.66242 - received 1000 scores

72

most expensive option

round: 0001/0005
aws time for round was: 5.436071 - received 1000 scores
round: 0002/0005
aws time for round was: 3.716347 - received 1000 scores
round: 0003/0005
aws time for round was: 3.610138 - received 1000 scores
round: 0004/0005
aws time for round was: 4.487011 - received 1000 scores
round: 0005/0005
aws time for round was: 3.374353 - received 1000 scores

73

What about costs?
Typically, the concurrency limit for Lambda is 1000. If you
want to be able to have more functions running at the same
time you need to make a request to AWS for an upgrade.

Vincent called them, explained we needed it for a card
game and they gave us the upgrade within 15 minutes.

Note that if the endpoint is open on HTTP, this is a
potential vector for DDOS.

74

Engineering Conclusions
— AWS Lambda isn't marketed for this, but our witty use

of the stack actually made sense. You get a
reasonable speedup for very little cost/effort.

— This is especially true for Chalice, getting started is
super easy.

— There is a difference between hot/cold functions.
— State is a tricky beast.
— Async is powerful but the details are hard to get right.

75

Science Conclusion
Concurrency & Algorithms
It was NP-HARD
Did Vincent start winning?
Was his girlfriend in awe?

76

No
77

She even made a gif about it ...

78

The Truth
We ran both the batch thing and the more streaming
thing (4500+ concurrent cores) and we unfortunately
found out (after implementing everything and optimising
a fair) that the algorithm tends to converge after only
two iterations ...

... in this case we had more learning from the road than
from the destination.

79

Lessons

— The squid seems the best card.
— Our approach is very very naive. The game has a rock, paper and

scissors element for example. Our approach com-ple-tely misses
the actual gameplay.

— Never-the-less, our approach scales well and is cheap!
— Premature optimisation might be a problem still.
— We sure had fun and really learned a lot about serverless and

gained a concurrenty grid-pattern that seems useful for other work.

Thanks for listening! Questions?

80

