
From Small Sensors to Big Queries
It's Serverless unless you include the Sensors

Vincent D. Warmerdam - GDD - @fishnets88 - koaning.io

My problem started around 1890

I bought an old house and I want to start fixing things.

My problem needs fixing in 2018

I bought an old house and I want to start fixing things.

— there's a humidity problem
— there's a temperature leak or two
— keeping doors open between rooms

It helps that I'm a bit of a nerd and this is a great excuse
to learn about electronics. I also don't mind playing with
gcloud.

Today

I'll talk about these topics.

— the hardware
— the software
— the cloudware
— why the setup is great
— future stuff

Raspberry Pi Zero: Wifi and PINS!

Sensors: Raspberry Pi Hat $35

Sensors: Envirophat $11

Sensors: Garden Hat $40

Sensors: Just a Hat $9

Sensors: Cable ($20 ?!)

Sensors: Future

Python: write a class!

import bme680

class Measurement:

 def __init__(self):

 with open("/credentials/hostname.j2") as f:

 self.name = f.read()

 os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = '/path/creds.json'

 self.sensor = bme680.BME680()

 self.sensor.set_humidity_oversample(bme680.OS_2X)

 self.sensor.set_pressure_oversample(bme680.OS_4X)

 self.sensor.set_temperature_oversample(bme680.OS_8X)

 self.sensor.set_filter(bme680.FILTER_SIZE_3)

 self.sensor.set_gas_status(bme680.ENABLE_GAS_MEAS)

 self.sensor.set_gas_heater_temperature(320)

 self.sensor.set_gas_heater_duration(150)

 self.sensor.select_gas_heater_profile(0)

Advice: not every raspberry will have every sensor.

 @property

 def temperature(self):

 return self.rowlog('temperature', self.sensor.data.temperature)

 @property

 def humidity(self):

 return self.rowlog('humidity', self.sensor.data.humidity)

 @property

 def light(self):

 from bh1745 import BH1745

 bh1745 = BH1745()

 bh1745.setup()

 r, g, b = bh1745.get_rgb_scaled()

 return self.rowlog('light', max([r,g,b]))

Advice: not every raspberry will have every sensor.

 def rowlog(self, name, reading):
 return name, reading, self.name, self.ip, str(dt.datetime.now())

 @property
 def data_logs(self):
 data = [self.temperature, self.humidity]
 try:
 data.append(self.light)
 except (ImportError, RuntimeError):
 pass
 return data

Running the code every minute

Now that I have the python code, I can run it and log my
data. But how do I run it on a regular interval?

Running the code every minute

> crontab -e

#--

example unix/linux crontab file format:

#--

min,hour,dayOfMonth,month,dayOfWeek command

#

field allowed values

----- --------------

minute 0-59

hour 0-23

day of month 1-31

month 1-12 (or names, see below)

day of week 0-7 (0 or 7 is Sun, or use names)

#--

run the drupal cron process every hour of every day

0 * * * * python /files/python_file_runs_every_hour.py

run this apache kludge every minute of every day

* * * * * python /files/python_file_runs_every_minute.py

Now what?

This kind of works but there are downsides.

— how do I install everything on all those devices?
— how do I update my code/hardware?
— how can I analyse the data, do I need to manually

copy everything?
— automatically copying data from raspberry to my

machine poses a security risk
— is there a serverless way?

Situation

Nearly There

The Setup

The Setup: Benefits!

Observation

Spending some time thinking about how you want to do
this is important. It merely takes pen and paper and it
seriously saves a lot of time in the long run.

Ansible

> tree -L 2
.
!"" README.md
!"" ansible
!"" hostname.j2
!"" hosts
!"" provision-cronjobs-rasp-electro.yml
!"" provision-cronjobs-rasp-zero.yml
!"" provision-files-rasp3.yml
$"" provision-tools-rasp3.yml

Ansible

Ansible uses your ssh config.

~/.ssh/config

Host rpi-zero-attic

 HostName 123.456.789.1

 User pi

 IdentityFile ~/.ssh/home-rpi-keyfile

Host rpi-zero-tv

 HostName 123.456.789.2

 User pi

 IdentityFile ~/.ssh/home-rpi-keyfile

...

...

Ansible

You can assign groups in the hosts file.

[raspberries]
rpi-zero-attic ansible_user=pi
rpi-zero-tv ansible_user=pi
rpi-zero-catroom ansible_user=pi
rpi-zero-bedroom ansible_user=pi
rpi-zero-curtain ansible_user=pi
rpi-zero-sewing ansible_user=pi
rpi-zero-kitchen ansible_user=pi

[electro]
rpi-electro ansible_user=pi

Ansible .yml files

- hosts: raspberries, electro
 become: yes
 become_user: root
 tasks:
 - name: make sure that we have most recent apt
 command: apt-get update

 - name: install all the apt get stuff, incl fail2ban
 apt: name={{item}} state=installed
 with_items:
 - fail2ban
 - postfix
 - build-essential

 - name: pip install requirements globally
 pip: name={{item}} state=present
 with_items:
 - google-cloud-bigquery
 - ipython

Ansible .yml for cron

- hosts: raspberries
 become: yes
 become_user: root
 tasks:
 - name: remove old humidity/temperature cronjob
 cron:
 name="humiditemp"
 state=absent
 user=pi
 - name: add new humidity/temperature cronjob
 cron:
 name="humiditemp"
 minute="*"
 user=pi
 job="sudo /usr/bin/python /loggers/cron-scripts/measure.py"

Updates are easy.

It was extra work, but locally I can update everything
now in parallel with commands like this:

ansible -i hosts all -m ping
ansible-playbook -i hosts provision-tools-rasp3.yml
ansible-playbook -i hosts provision-files-rasp3.yml
ansible-playbook -i hosts provision-cronjobs-rasp3.yml

This is great. Work from one machine, deploy to
everything!

BigQuery

For most intents and purposes, BigQuery is a simple/
cheap way to store/analyse a large table. The small code
below just appends data to a table.

def postbigq(request):

 measure = Measurement()

 os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = '/path/file.json'

 client = bigquery.Client()

 dataset_id = '<ID_FOR_MY_DATASET>'

 table_id = '<ID_FOR_MY_TABLE>'

 table_ref = client.dataset(dataset_id).table(table_id)

 table = client.get_table(table_ref)

 errors = client.insert_rows(table, measure.datarows)

 assert errors == []

Sensor in the Garden

I was considering installing a raspberry outside with
solar panels and everything.

Sensor in the Garden

I was considering installing a raspberry outside with
solar panels and everything.

I'll still do this someday, but hardware takes more time
than software and you cannot CMD-c + CMD-v in real
life. So instead of measuring the weather outside of my
house, I figured scraping the weather APIs would be a
much better idea.

Sensor in the Garden

I was considering installing a raspberry outside with
solar panels and everything.

I'll still do this someday, but hardware takes more time
than software and you cannot CMD-c + CMD-v in real
life. So instead of measuring the weather outside of my
house, I figured scraping the weather APIs would be a
much better idea.

It was.

Cloud function

Cloud function

I wrote another Measure python class that regards APIs as
if they were sensor outputs. Much of the code could be
re-used.

> gcloud beta functions deploy scrapeweather
 --entry-point postbigq
 --project ml-babies
 --runtime python37
 --trigger-http

It's not just the scraper that is serverless ...

Cloud Scheduler

Even cron is serverless in my stack.

Costs

Per day I log about.

I've been running this for about 3 months.

This totals to about 150MB of data, with a dumb schema.

Costs

That's 600MB per year.

Considering the storage pricing ...

Considering the query pricing ...

Demo

Pulling data from BQ can be done easily from pandas in
python or dplyr in R. I'll give a demonstration of shiny
now to show you what I am currently measuring.

Final Tips

If you're going to do this yourself, think about sensors!
The heat from the raspberry influences the temperature/
humidity sensor. So does sunlight!

Either do some hardware work and move the sensors
away from the raspberry. Or apply consider physics.

Either way, consider that sensors are always biased.

Final Tips

It's kind of a long story, but the wifi router that connects
my entire house does not offer static ip's. Hence; it
might make sense to log the ip-address of your
raspberry device.

That way, if the ip-address is re-assigned you can check
the data you're logging to figure out what the most
recent ip dress was of each sensor.

Executive Summary: Thy Heroes

— raspberry pi
— pimoroni sensors
— ansible
— gcloud
— python
— rstudio

But the epic summary is that my only servers are the
sensors themselves. The world really is changeing.

Appendix: ML for BigQuery [beta]

CREATE MODEL `models.natality_model`
OPTIONS
 (model_type='linear_reg',
 input_label_cols=['weight_pounds']) AS
SELECT
 weight_pounds,
 is_male,
 gestation_weeks,
 mother_age,
 CAST(mother_race AS string) AS mother_race
FROM
 `bigquery-public-data.samples.natality`
WHERE
 weight_pounds IS NOT NULL
 AND RAND() < 0.001

