From Small Sensors to Big Queries

It's Serverless unless you include the Sensors

Vincent D. Warmerdam - GDD - @fishnets88 - koaning.io

My problem started around 1890

| bought an old house and | want to start fixing things.

My problem needs fixing in 2018

| bought an old house and | want to start fixing things.

— there's a humidity problem
— there's a temperature leak or two
— keeping doors open between rooms

It helps that I'm a bit of a nerd and this is a great excuse
to learn about electronics. | also don't mind playing with

gcloud.

Today

I'lLl talk about these topics.

— the hardware

— the software

— the cloudware

— why the setup is great
— future stuff

Raspberry Pi Zero: Wifi and PINS!

Sensors: Raspberry Pi Hat $35

Sensors: Envirophat $11

Sensors: Garden Hat $40

Sensors: Just a Hat $9

Sensors: Cable ($20 ?!)

Sensors: Future

Python: write a class!

import bme680
class Measurement:

def __init__ ;

with open("/credentials/hostname.j2") as f:
self.name = f.read()

os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = '/path/creds. json'’
self.sensor = bme680.BME680Q()
self.sensor.set_humidity_oversample(bme680.0S_2X)
self.sensor.set_pressure_oversample(bme680.0S_4X)
self.sensor.set_temperature_oversample(bme680.0S_8X)
self.sensor.set_filter(bme680.FILTER_SIZE_3)
self.sensor.set_gas_status(bme680.ENABLE_GAS_MEAS)
self.sensor.set_gas_heater_temperature(320)
self.sensor.set_gas_heater_duration(150)
self.sensor.select_gas_heater_profile(0)

Advice: not every raspberry will have every sensor.

@property
def temperature
return self. rowlog(temperature', self.sensor.data.temperature)

@property
def humidity
return self.rowlog('humidity', self.sensor.data.humidity)

@property
def light
from bh1745 import BH1745
bh1745 = BH1745()
bh1745.setup()
r, g, b = Dbh1745.get_rgb_scaled()
return self.rowlog('light', max(Lr,g,bl))

Advice: not every raspberry will have every sensor.

def rowlog :
return name, reading, self.name, self.ip, str(dt.datetime.now())

@property
def data_logs :
data = [self.temperature, self.humidity]
try:
data.append(self.light)

except (ImportError, RuntimeError):
Pass

return data

Running the code every minute

Now that | have the python code, | can run it and log my
data. But how do | run it on a regular interval?

Running the code every minute

> crontab -e

__
example unix/linux crontab file format:

__
min, hour,dayOfMonth,month,dayOfWeek command

#

field allowed values

minute 0-59

hour 0-23

day of month 1-31

month 1-12 (or names, see below)

day of week ©-7 (0 or 7 1s Sun, or use names)
__

run the drupal cron process every hour of every day
@ * * * x python /files/python_file_runs_every_hour.py

run this apache kludge every minute of every day
* x x % % python /files/python_file_runs_every_minute.py

Now what?

This kind of works but there are downsides.

— how do | install everything on all those devices?
— how do | update my code/hardware?

— how can | analyse the data, do | need to manually
copy everything?

— automatically copying data from raspberry to my
machine poses a security risk

— is there a serverless way?

Situation

= ¥l %W“F‘
g '@ VINCENT
e & 8 @d

log A

? 1t needs to be

- cheap
- easy to analyse
- robust/backup

Nearly There

= JIF) RwiF

F’;SQ“'“)/] — | Dala ‘S'iucll:J

L_, W%m/R/ML suHf

W‘l)/ ?9(59\40;1 o[astwboaﬂ})

The Setup

VINCENT
..... mosnBLE @

L

Sl

E;SQW“/ ‘Dﬂ"-cl. QUCIIOJ

L—b Woa /R /ML Skt

W‘l)/ ?ef5gv\al o[astwboaﬂ})

The Setup: Benefits!

CRON C;’; -
5 &
Scrq])cal lgH
VAR
K_, EBQM()/]-—’)

VINCENT

g ¢

Data QUGIIEJ

L—, ’W‘-Hdm/R/ML St

W‘l)/ ?efsgnql olas[qboafc},

Observation

Spending some time thinking about how you want to do
this is important. It merely takes pen and paper and it
seriously saves a lot of time in the long run.

Ansible

> tree -L 2

README . md
ansible

nostname. j2

— NhosStSs
—— provision-cronjobs-rasp-electro.yml
—— provision-cronjobs-rasp-zero.yml

—— provision-files-rasp3.yml

L— provision-tools-rasp3.yml

Ansible

Ansible uses your ssh config.

~/.ssh/config
Host rpi-zero-attic

HostName 123.456.789.1

User pi

IdentityFile ~/.ssh/home-rpi-keyfile
Host rpi-zero-tv

HostName 123.456.789.2

User pi

IdentityFile ~/.ssh/home-rpi-keyfile

Ansible

You can assign groups in the hosts file.

[raspberries]

rpi-zero-attic ansible_user=pi
rpi-zero-tv ansible_user=pi
rpi-zero-catroom ansible_user=pi
rpi-zero-bedroom ansible_user=pi
rpi-zero-curtain ansible_user=pi
rpi-zero-sewing ansible_user=pi
rpi-zero-kitchen ansible_user=pi

[electro]
rpi-electro ansible_user=pi

Ansible .yml files

- hosts: raspberries, electro
become: yes
become_user: root
tasks:
- name: make sure that we have most recent apt
command: apt-get update

- name: install all the apt get stuff, incl fail2ban
apt: name={{item}} state=installed
with_items:
- fail2ban
- postfix
- build-essential

- name: pip install requirements globally
pip: name={{item}} state=present
with_items:

- google-cloud-bigquery
- ipython

Ansible .yml for cron

- hosts: raspberries
pecome: yes
pecome_user: root
tasks:
- name: remove old humidity/temperature cronjob
cron:
name="humiditemp"
state=absent
user=pi
- name: add new humidity/temperature cronjob
cron:
name="humiditemp"
minute="%"
user=pi
job="sudo /usr/bin/python /loggers/cron-scripts/measure.py"

Updates are easy.

It was extra work, but locally | can update everything
now in parallel with commands like this:

ansible -1 hosts all -m ping

ansible-playbook -1 hosts provision-tools-rasp3.yml
ansible-playbook -1 hosts provision-files-rasp3.yml
ansible-playbook -1 hosts provision-cronjobs-rasp3.yml

This is great. Work from one machine, deploy to
everything!

BigQuery

For most intents and purposes, BigQuery is a simple/
cheap way to store/analyse a large table. The small code
below just appends data to a table.

def postbigq ;
measure = Measurement()
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = '"/path/file.json'
client = bigquery.Client()
dataset_id = '<ID_FOR_MY_DATASET>'
table_id = '<ID_FOR_MY_TABLE>"
table_ref = client.dataset(dataset_id).table(table_id)
table = client.get_table(table_ref)
errors = client.insert_rows(table, measure.datarows)
assert errors == []

Sensor in the Garden

| was considering installing a raspberry outside with
solar panels and everything.

Sensor in the Garden

| was considering installing a raspberry outside with
solar panels and everything.

I'll still do this someday, but hardware takes more time
than software and you cannot CMD-c + CMD-v in real
life. So instead of measuring the weather outside of my

house, | figured scraping the weather APIs would be a
much better idea.

Sensor in the Garden

| was considering installing a raspberry outside with
solar panels and everything.

I'll still do this someday, but hardware takes more time
than software and you cannot CMD-c + CMD-v in real

life. So instead of measuring the weather outside of my

house, | figured scraping the weather APIs would be a
much better idea.

1t was.

Cloud function

= Google Cloud Platform g Q
(-") Cloud Functions Overview CREATE FUNCTION C REFRESH DELETE COPY
= Filter functions Columns ~
Name ~ Region Trigger Runtime Memory allocated Executed function Last deployed

Y@ scontall HTTP Python3.7 (Beta) 128 MB postbigq 9/16/18, 6:16 PM

Cloud function

| wrote another Measure python class that regards APIs as
if they were sensor outputs. Much of the code could be
re-used.

> gcloud beta functions deploy scrapeweather
-—-entry-point postbigq
--project ml-babies
--runtime python37
--trigger-http

It's not just the scraper that is serverless ...

Cloud Scheduler

Even cron is serverless in my stack.

— Google Cloud Platform &® ml-babies w

@ Cloud Scheduler

= Filter resources

Name State

haarlem-weather- Enabled
trigger

C REFRESH CREATE JOB
Description Frequency
this is a trigger for the haarlem every T mins
weather scraper (Europe/Amsterdam)

Target

URL: https://us-central1-ml-
babies.cloudfunctions.net/scrapeweather

Last run

Nov 24, 2018,
9:28:00 AM

Result

Success

Logs

View

Run now

Costs

Per day | log about.

3 sensors X 7 devices x 1440 readings/day =~ 30K rows/day

I've been running this for about 3 months.

30K rows/day x 90 days ~ 2.7M rows

This totals to about 150MB of data, with a dumb schema.

Costs

That's 600MB per year.

Considering the storage pricing ...

$0.020GB ! x 0.6GB x 12 months ~ $0.12 year *

Considering the query pricing ...

1,000,000 MB
600 MB

~ 1667 years before I start paying

Pulling data from BQ can be done easily from pandas in
python or dplyr in R. I'll give a demonstration of shiny
now to show you what | am currently measuring.

Final Tips

If you're going to do this yourself, think about sensors!
The heat from the raspberry influences the temperature/
humidity sensor. So does sunlight!

Either do some hardware work and move the sensors
away from the raspberry. Or apply consider physics.

actual temperature = f(sensor temp, cpu temp)

Either way, consider that sensors are always biased.

Final Tips

It's kind of a long story, but the wifi router that connects
my entire house does not offer static ip's. Hence; it
might make sense to log the ip-address of your
raspberry device.

That way, if the ip-address is re-assigned you can check
the data you're logging to figure out what the most
recent ip dress was of each sensor.

Executive Summary: Thy Heroes

— raspberry pi

— pimoroni sensors
— ansible

— gcloud

— python

— rstudio

But the epic summary is that my only servers are the
sensors themselves. The world really is changeing.

Appendix: ML for BigQuery [beta]

CREATE MODEL "models.natality_model"
OPTIONS

(model_type="linear_reg',

input_label_cols=["'weight_pounds']) AS

SELECT

welght_pounds,

1s_male,

gestation_weeks,

mother_age,

CAST(mother_race AS string) AS mother_race
FROM

"bigquery-public-data.samples.natality’
WHERE

weight_pounds IS NOT NULL
AND RAND() < 0.001

