
How To Win
With Simple,
Even Linear,
Models
Vincent D. Warmerdam
koaning.io - fishnets88 - GoDataDriven

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 1

Why I am Talking about This
You may have heard variants of this quote;

"You should use DeepLearning[tm]"

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 2

Why I am Talking about This
You may have heard variants of this quote;

"You should use DeepLearning[tm]"
— Blogs, Reddit, HackerNews and YouTube Stars

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 3

Why I am Talking about This
"You should use DeepLearning[tm]"
— Blogs, Reddit, HackerNews and YouTube Stars

It's getting a bit worrysome. It feels like people are
focussing more about the tools that they're using than
the problem they are solving. I've applied deep learning
in production, but I prefer the simpler models.

In this talk. I'll explain why.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 4

Executive Summary

It's not like deep learning isn't amazing, it is, but the
hype is distracting people from great ideas.

You may be doing yourself short if you pay too much
attention to them. You can often win with simpler
models that have properties that are much nicer in
situations beyond a jupyter notebook (production).

My goal is to lure you to the domain of boring, old but
ultimately beautiful simple models.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 5

Topics of Today
— XOR is a linear problem.
— some simple/great timeseries tricks
— neat feature generation/sklearn tricks
— streaming models
— simple content recommender
— simple video game recommender
— hierarchical domain models
Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 6

The XOR Problem
One of the main arguments you hear against linear
models is that they cannot deal with the XOR problem.

Linear models can only split the data into a single line,
the XOR problem is a problem where the dataset is such
that you cannot use a single line to split it.

Every textbook on neural networks has this example
listed as a reason why NNs beat standard regression.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 7

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 8

Code: Logistic Regression

Let's confirm that logistic regression might be worse.

> from sklearn.linear_model import LogisticRegression
> y,X = patsy.dmatrices("type ~ x1 + x2", df)
> pred = LogisticRegression().fit(X, y).predict(X)

The confusion matrix isn't great.

> confusion_matrix(y,pred)
array([[223, 77],
 [118, 182]])

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 9

Code: Support Vector Machine

Understanding a SVM is harder than applying it.

> from sklearn.svm import SVC
> y,X = patsy.dmatrices("type ~ x1 + x2", df)
> pred = SVC().fit(X,y).predict(X)

The confusion matrix is better.

> confusion_matrix(y,pred)
array([[294, 6],
 [2, 298]])

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 10

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 11

Code: Feature Engineering

Feature engineering is as easy to understand/apply.

> df['x1x2'] = df['x1'] * df['x2']
> y,X = patsy.dmatrices("type ~ x1 + x2 + x1x2", df)
> pred = LogisticRegression().fit(X,y).predict(X)

The confusion matrix is better.

> confusion_matrix(y,pred)
array([[290, 10],
 [3, 297]])

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 12

Code: Feature Engineering

We just gave a demo of a linear method solving a non-
linear problem by adding a single line of code.

Because the model is linear we gain properties:

— more regularisation tricks
— better interpretability

As a consultant, it's easier for me to leave a linear model
at a client if they're just starting with modelling.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 13

Next Up
I hope this example spoke to
your intuition, but these feature
engineering tricks are actually a
life saver.

In the next part, we'll discuss
feature engineering tricks that
have gone to production plenty
of times.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 14

Year Ahead Timeseries

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 15

Year Ahead Timeseries
Things about this dataset;

— it is daily data and we have 4 years of data
— it is a year ahead prediction
— it is a faily common planning task
— feature engineering will play a large role

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 16

Dummy Variables Alternative

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 17

Year Ahead Timeseries
Instead of adding dummy variables, we could add smart
variables. I'll call them smarties with pun intended. We
want to have something that is more than a mere
average and something where you can learn from
2018-04-30 to predict 2018-05-01.

Just like with the XOR problem, the goal is to add simple
features in order to deal with the non-linearity.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 18

Radial Basis Functions
There's these functions we could apply.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 19

Radial Basis Functions
You can change to change the shape.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 20

Radial Basis Functions
There's these functions we could apply.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 21

Radial Basis Functions
There's these functions we could apply.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 22

Radial Basis Functions
There's these functions we could apply.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 23

Radial Basis Functions
If you create these features, the dataframe will look like:

year day y x01 ... x12
2016 212 4.375096 4.448581e-01 ... 2.721434e-43
2016 213 4.798139 4.855369e-01 ... 7.305730e-43
2016 214 3.130771 5.272924e-01 ... 1.951452e-42
2016 215 5.115325 5.697828e-01 ... 5.186577e-42
2016 216 4.527225 6.126264e-01 ... 1.371615e-41
2016 217 3.975743 6.554063e-01 ... 3.609210e-41

Put in another way, this is a feature engineering trick.
Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 24

Radial Basis Functions

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 25

Effect of Hyperparam

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 26

Since the model is linear we can use maths to figure out
which columns might need to go away. Maybe like this:

 Residuals:
 Min 1Q Median 3Q Max
 -0.68951 -0.14282 0.00027 0.14625 0.61059

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 x1 2.78156 0.05104 54.500 < 2e-16 ***
 x2 -0.37352 0.10721 -3.484 0.000512 ***
 x3 1.40336 0.15269 9.191 < 2e-16 ***
 x4 -1.84918 0.18472 -10.011 < 2e-16 ***
 x5 -0.60581 0.20559 -2.947 0.003275 **
 x6 -1.58640 0.21831 -7.267 6.66e-13 ***
 x7 -0.15144 0.22515 -0.673 0.501316
 x8 0.11158 0.22721 0.491 0.623450
 x9 -0.22219 0.22410 -0.991 0.321660
 x10 0.42819 0.21271 2.013 0.044332 *
 x11 -0.87599 0.18411 -4.758 2.19e-06 ***
 x12 1.73673 0.11847 14.659 < 2e-16 ***

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 27

Since the model is linear we can use maths to figure out
which columns might need to go away.

There are alternatives to feature selection;

— sklearn has a bunch of cool ones
— bayesian regression and critisism could give even

more insight

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 28

Nice Properties

— This feature allows for predictions that are many
timesteps into the future.

— By approaching this timeseries task with these
features you can build it on anything that has linear
regression (H20/SparkML/R::lm). If the system does
not offer a timeseries module, you can still manage.

— All the magic occurs in the feature engineering step,
so little mental investment is needed to learn a new
domain of modelling.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 29

Nice Properties

— You can mold this approach. You can make RBF-
features for time of day and for day of year. You can
create more than 12 features per year or less if your
usecase allows for it.

— Since everything is linear it is straightforward to use a
bayesian estimator for the features. If certain months
have less datapoints you can quantify the uncertainty.

— All of these steps are very flexible and very
interpretable.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 30

Small War Story

I had to make predictions for a
client that was in retail, the
predictions needed to be a year
ahead.

One simple observation was that
we might be able to improve the
model by calculating these RBF
features for each day of the
week seperately. It made sense
because the seasonality was
different for day of the week.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 31

Small War Story

An additional trick was to also generate features for
holidays.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 32

Features with Benefits!

Like before, a very simple feature engineering trick made
our linear model got a whole lot more powerful.

One could apply this trick for non-linear models too but
you loose a bit of control over what happens to the
features. You may also not realize this feature-trick if
you're assuming the model solves everything.

Thing to note: GBM, RF, DNN models won't automagically
create such features for you.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 33

Let's consider a variant of the same problem now.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 34

Change of Problem: Before

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 35

Change of Problem: A!er

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 36

Change of Problem
This dataset resembles something common in time-
series; datapoints that are more recent should have
more influence than the points that are far away. It
would be nice to perform a regression that is able to
acknowledge this.

We can force a regression to take this into account in
sklearn. But let's first discuss the theory behind it a
little bit. I'll try to keep the maths light.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 37

Weighted Linear Regression
Normally you want to minimize an error:

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 38

Weighted Linear Regression
Normally you want to minimize an error:

Or:

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 39

Weighted Linear Regression
Some people use this as a tactic to reduce overfitting.

This is called Ridge Regression and sklearn has an
implementation for it.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 40

Weighted Linear Regression
Another alternative:

Here is some score that we come up with that
determines how important we think the datapoint is.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 41

Weighted Linear Regression: Nerd Maths

For the math geeks. We have closed form solution.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 42

Weighted Linear Regression
For the rest of us, scikit learn has this implemented.

mod_skew = LinearRegression()
mod_skew.fit(X_train, y_train,
 sample_weight=train_df['importance'])

It will apply the weights to the errors automatically. Note
that Support Vector Machine and Logistic models also
allow you to pass in your own importance weights.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 43

Weighted Linear Regression
You do need to set your importance weight yourself. You
could do this from pandas though.

year day y importance
2015 1 4.026617 3.005733e-07
2015 2 4.667070 1.082064e-05
2015 3 2.636582 3.636936e-05
...
2019 361 2.558010 1.591240e+01
2019 362 2.799675 1.593428e+01
2019 363 2.659237 1.595617e+01
Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 44

Weighted Linear Regression

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 45

Weighted Linear Regression

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 46

Weighted Linear Regression
Some things to remember:

— we've used weights to tell the model we care less
about the far away history and more about the recent
history

— this trick may also be useful to try when you are
dealing with unbalanced data

— you can tune the effect of the error as a hyperparam
in a grid search if you want

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 47

Optimise Thy Hyperparameters

I like to be able to quickly play with hyperparams (evol!).

def score(alpha = 300, decay = 0.999):
 # apply pandas transformations
 ml_df = df.pipe(add_rbf_features, alpha = alpha).pipe(add_importance, decay = decay)

 # prepare data for sklearn
 radial_cols = [c for c in df.columns if 'x' in c]
 train_df, test_df = ml_df[ml_df['set'] == 'train'], ml_df[ml_df['set'] == 'test']
 X_train, X_test = train_df[radial_cols].as_matrix(), test_df[radial_cols].as_matrix()
 y_train, y_test = train_df['skew'], test_df['skew']

 # train model and return the test performance
 mod_skew = LinearRegression()
 mod_skew.fit(X_train, train_df['skew'], sample_weight=train_df['importance'])
 return np.mean(np.abs(mod_skew.predict(X_test) - y_test))

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 48

Weighted Linear Regression
Currently we've filtered away a seasonal trend which we
assume does not change over time. We care less about
the history, sure, but we haven't modelled a seasonal
change.

Let's fix this, while learning a bit of R at the same time.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 49

Interaction Terms
In R, this is how you could define column dependance.

y ~ x01 + x02 + x03 + x04 + x05 + x06 +
 x07 + x08 + x09 + x10 + x11 + x12

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 50

Interaction Terms
It is possible to define an interaction term too.

y ~ time*(x01 + x02 + x03 + x04 + x05 + x06 + x
 x07 + x08 + x09 + x10 + x11 + x12)

You will get all the RBF columns as well as all these
columns multiplied by time. This is kind of like a DSL for
manual feature selection.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 51

Interaction Terms
Thanks to patsy you can use this trick in python too.

formula = "skew ~ y*(x01 + x02 + x03 + x04 + x05 +
 x06 + x07 + x08 + x09 + x10 + x11 + x12)"
y_train, X_train = patsy.dmatrices(formula,
 data=ml_df[ml_df['set'] == 'train'])

It is very little code considering what it is all doing. Note
that patsy automatically converts categorical/string-
columns to encoded numpy arrays.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 52

Interaction Terms
This is what X_train contains:

DesignMatrix with shape (1095, 26)
 Columns:
 ['Intercept','time','x01','x02','x03','x04',
 'x05','x06','x07','x08','x09','x10','x11',
 'x12','time:x01','time:x02','time:x03','time:x04',
 'time:x05','time:x06','time:x07','time:x08',
 'time:x09','time:x10','time:x11','time:x12']
 Terms:
 ...
 (to view full data, use np.asarray(this_obj))

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 53

Notes on Interaction Terms
Since we risk generating a lot of features this way it may
be a good idea to see if we really need all these selected
variables.

— perhaps consider a Ridge model to prevent overfitting
— you could see this as yet another hyperparameter
— you could apply T-tests manually (statsmodels)
— you could use sklean.feature_selection

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 54

The Interaction Effect

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 55

The Interaction Effect

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 56

The Interaction Effect

Some parts are predicted better, other parts worse.
Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 57

A Bit of Trial And Error Ensues
After some trial and error I decided to drop the
importance weights per row and I switched from linear
regression to a Ridge regression.

I was afraid about overfitting so I decided to use a
feature selector from sklearn.

from sklearn.feature_selection import RFE
rfe_mod = Ridge(alpha=0.00001)
mod_feature_cv = RFE(rfe_mod, step=5).fit(X_train, y_train)

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 58

A Bit of Trial And Error Ensues

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 59

Why Not DeepLearning[tm]?

Our example had 3 years of data (datapoints).
This is not a whole lot of data for a deep learning model,
you want to have much more to train all the weights.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 60

Why Not DeepLearning[tm]?

Our example had 3 years of data (datapoints).
This is not a whole lot of data for a deep learning model,
you want to have much more to train all the weights.

Linear models are easy to maintain and debug.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 61

Why Not DeepLearning[tm]?

Our example had 3 years of data (datapoints).
This is not a whole lot of data for a deep learning model,
you want to have much more to train all the weights.

Linear models are easy to maintain and debug.

Linear models actually train kind of fast, which is great.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 62

Why Not DeepLearning[tm]?

Our example had 3 years of data (datapoints).
This is not a whole lot of data for a deep learning model,
you want to have much more to train all the weights.

Linear models are easy to maintain and debug.

Linear models actually train kind of fast, which is great.

Linear models are easy to explain to humans of
management.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 63

Why Not DeepLearning[tm]?

Here comes my favorite reason.

Linear models are convex! This means that math tells us
the optimiser will always converge to the maximum fit.
Tensorboard is a cool tool but it's even cooler if you
don't need it.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 64

Why Not DeepLearning[tm]?

Don't get me wrong. I've put deep learning systems into
production and I like the algorithms. They solve
problems I couldn't solve with other algorithms.

But production is dangerous. We have to code up checks
to confirm the new data didn't cause the optimiser to
get stuck in a wrong optimum.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 65

Speaking of Production

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 66

Next Up; Streaming
Instead of handling data in a batch setting we
sometimes need to deal with models in a stream setting.
Preferably we have models that can adapt and update
very quickly.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 67

Passive Agressive Algorithms
There's a cool trick about linear models: streaming!

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 68

Passive Agressive Algorithms
There's multiple ways to do this. I'll briefly discuss PA.

There is an implementation in sklearn, but you could
also imagine an easy implementation for apache flink or
spark streaming.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 69

Passive Agressive Algorithms
Supppose we are doing a regression for point .

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 70

Passive Agressive Algorithms
For 1 datapoint, the blue and yellow line are equal in fit.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 71

Passive Agressive Algorithms
We can also look at the point in weight space.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 72

Passive Agressive Algorithms
Suppose that we had weights from before .

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 73

Passive Agressive Algorithms
We know the shortest path to make fit perfectly.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 74

Passive Agressive Algorithms
Let's never update more than a certain stepsize .

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 75

Passive Agressive Algorithms

Let's only update if

That way the algorithm either does not update (passive)
or it does a large update (agressive).
Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 76

Passive Agressive Algorithms
Nice. We now have an algorithm to update weights of a
regression in a stream. Turns out that sklearn has an
implementation of this (both for regression and
classification).

Note that this streaming approach is interesting when
you run your algorithm in batch too. The memory needed
for a streaming approach is much smaller because you
don't need the entire dataset in memory.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 77

Passive Agressive Algorithms

In practice you probably want to introduce a stepsize for
when the algorithm just started and when it is hot.

I've started a small experiment:

— use the sklearn randomdata
— after 30 datapoints use , before
— compare to a normal regression on entire dataset
— sklearn.linear_model.PassiveAggressiveRegressor
Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 78

 and

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 79

 and

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 80

 and

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 81

Passive Agressive Algorithms

Note that this approach on a live system is especially
useful when:

— you have labels that come in during your stream
— you want near realtime updating of the weights
— you might have a world that changes over time, this

algorithm favors recent datapoints

More details/maths on blog or in the original paper.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 82

http://koaning.io/passive-agressive-algorithms.html
http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf

"But, when do you have labels that
come in a stream?"

— The Audience

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 83

Let's talk Recommender Systems

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 84

Let's talk Recommender Systems

The items features won't change, but the user features
we might want to update per click, ASAP!
Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 85

Can you spot the regression?

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 86

Speaking of Recommenders

It could make sense to use a deep learning method
instead (latent space for an item-feature vector is very
sensible). But which is more important:

— to have a more accurate algorithm that can be
updated once per day

— to have an algorithm that can update it's belief at
every mouseclick

Don't just think ML, think about system design.
Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 87

Speaking of Recommenders
I wouldn't recommend this collaborative/neural
approach if you're just starting out though.

There's a much simpler algorithm that I find to work a
lot better.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 88

Speaking of Recommenders
Let's pretend we're about to build a recommender at the
dutch BBC. We could calculate what is popular.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 89

Speaking of Recommenders
Let's pretend we're about to build a recommender at the
BBC. We could calculate what is popular.

It would be better instead to calculate.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 90

Speaking of Recommenders

series_i series_j prob_i_and_j prob_j rating_score

content_a content_b 0.2 0.1 2
content_a content_c 0.1 0.01 10
content_a content_d 0.05 0.02 2.5
content_a content_e 0.4 0.3 1.3333
...

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 91

Speaking of Recommenders

Note that this item-item recommender;

— so simple, you could write this algorithm in SQL
— this figure is easily calculated on a stream of data
— all the parts of the algorithm are interpretable

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 92

Speaking of Recommenders

Note that it is easy to turn into a personal one too.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 93

Speaking of Recommenders
I've seen this algorithm go to production a bunch and it
was pretty hard to beat.

There's only one algorithm that beat it when I was at a
video content company. Hint; the algorithm was even
simpler.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 94

Speaking of Recommenders
I've seen this algorithm go to production a bunch and it
was pretty hard to beat.

There's only one algorithm that beat it when I was at a
video content company. Hint; the algorithm was even
simpler.

You can also just recommender the next episode.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 95

Speaking of Recommenders
It would be awkward if the video service:

— never tried recommending next episode first

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 96

Speaking of Recommenders
It would be awkward if the video service:

— never tried recommending next episode first
— never implemented A/A or A/random baselines

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 97

Speaking of Recommenders
It would be awkward if the video service:

— never tried recommending next episode first
— never implemented A/A or A/random baselines
— was thinking about using DeepLearning[tm] instead

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 98

Speaking of Recommenders
It would be awkward if the video service:

— never tried recommending next episode first
— never implemented A/A or A/random baselines
— was thinking about using DeepLearning[tm] instead

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 99

Speaking of Recommenders
It would be awkward if the video service:

— never tried recommending next episode first
— never implemented A/A or A/random baselines
— was thinking about using DeepLearning[tm] instead
— was not thinking beyond a notebook

Focus on hyped algorithms can be dangerous. Please
start with the simplest end to end pipeline before
Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 100

Two More Examples
I'll conclude with two more examples that hopefully will
convince you even more to try modelling things yourself.
I'll even give you a glimpse of what ML programming
might look like in the (hopefully) nearby future.

— one example is about video games
— one example is about chickens

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 101

video games go first

This is our enterprise usecase.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 102

video games go first

— we need to estimate player skill somehow
— we need to learn this from a stream of match

outcomes
— we don't want to wait for a batch algorithm

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 103

a simple solution

The way to make it work is to realize that the skill of a
player is not a single number, rather a distribution of
belief of the players skill.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 104

a simple solution

The next step is to realize that you can combine two
one-player beliefs of skills into a one two-player belief. A
prior of belief.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 105

a simple solution

After a game has been played the two dimensional prior
is updated depending on what the data shows us.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 106

a simple solution

We take a margin over the diagonal and any probability
mass from the region that disagrees with the match
outcome.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 107

a simple solution

We map the resulting probability back to each player.
These two players now have an updated belief on skill.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 108

a simple simulation: two equal players

There are some benefits we get for free. Try it out here.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 109

http://koaning.io/mini-trueskill-demo.html

a simple simulation: two unequal players

We may learn a lot, or very little. #informationtheory

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 110

a simple simulation: many players

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 111

test of functionality: pokemon!

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 112

test of functionality: pokemon!

We got our infromation on pokemon from;

Nowadays you can also find the dataset on kaggle.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 113

https://www.kaggle.com/abcsds/pokemon

test of functionality: pokemon!

If you google around fan reddits you can find information
on how many turns one pokemon can outlast the other.

Simply said, we can use this to simulate game
outcomes.
Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 114

test of functionality: pokemon!

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 115

test of functionality: pokemon!

 name mle name mle

128 Magikarp 0.011007 597 Ferrothorn 0.916377

112 Chansey 0.013735 425 Drifblim 0.917240

348 Feebas 0.015845 644 Zekrom 0.919065

171 Pichu 0.019108 537 Throh 0.921175

291 Shedinja 0.020473 482 Dialga 0.928502

439 Happiny 0.026763 149 Mewtwo 0.951472

241 Blissey 0.037009 483 Palkia 0.953823

172 Cleffa 0.042802 288 Slaking 0.956629

234 Smeargle 0.048575 375 Metagross 0.957383

49 Diglett 0.054010 492 Arceus 0.957729

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 116

the general maths of all this

Designing the algorithm became a whole lot easier when
we admitted that we want to quantify our uncertainty.
Using distributions as our state, not mere statistics,
made the algorith rather simple but very smart.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 117

the general maths of all this

Designing the algorithm became a whole lot easier when
we admitted that we want to quantify our uncertainty.
Using distributions as our state, not mere statistics,
made the algorith rather simple but very smart.

This really fits the bayesian mindset.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 118

bayesians to the rescue

Everybody notice we kind of get streaming for free?

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 119

bayesians to the rescue

Any ML algorithm that can be updated via
 is automatically a streaming

algorithm for ML because it forces the recursive relation;

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 120

bayesians to the rescue

Any ML algorithm that can be updated via
 is automatically a streaming

algorithm for ML because it forces the recursive relation;

laymans terms: come up with a sensible update rule for
a distribution and 'yer done!

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 121

bayesians to the rescue

You could even update it for teamplay.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 122

bayesians to the rescue

Here's the thing: the model is a mere histogram.

And, oh the benefits:

— we quantify our uncertainty
— we can apply the model in a streaming setting
— it's very easy to deploy/understand/debug/test

If you want to come up with such a model, taking a step
back from hype can really help.
Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 123

One Last Example: Chickens
Suppose that I have a dataset with chickens.

 weight Time Chick Diet
1 42 0 1 1
2 51 2 1 1
3 59 4 1 1
...
576 234 18 50 4
577 264 20 50 4
578 264 21 50 4

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 124

One Last Example: Chickens

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 125

Model 1: Base Regression

We could model it with a linear regression (R).

> model <- lm(weight ~ Time + Diet, data=chickweight)
> model %>% summary()
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.9244 3.3607 3.251 0.00122 **
Time 8.7505 0.2218 39.451 < 2e-16 ***
Diet2 16.1661 4.0858 3.957 8.56e-05 ***
Diet3 36.4994 4.0858 8.933 < 2e-16 ***
Diet4 30.2335 4.1075 7.361 6.39e-13 ***

No matter what backend you use, the model is all wrong.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 126

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 127

Model 2: R-trick: Nested Regression

> chickweight %>%
 group_by(Diet) %>%
 nest() %>%
 mutate(mod = data %>% map(~ lm(weight ~ Time, data=.)))

 Diet data mod
 <fctr> <list> <list>
1 1 <tibble [220 x 3]> <S3: lm>
2 2 <tibble [120 x 3]> <S3: lm>
3 3 <tibble [120 x 3]> <S3: lm>
4 4 <tibble [118 x 3]> <S3: lm>

Better, but this is still wrong.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 128

The problem

In Machine Learning if feels like we can pour data into a
predefined model but it doesn't feel like we can define
the model much.

We're usually constrained to perhaps feature engineering
and hyperparam tuning (which granted, is good enough
for lots of problems).

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 129

The problem

In Machine Learning if feels like we can pour data into a
predefined model but it doesn't feel like we can define
the model much.

We're usually constrained to perhaps feature engineering
and hyperparam tuning (which granted, is good enough
for lots of problems).

Popular ML libraries don't offer a real DSL for models.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 130

Model 3: Domain Model

I wrote what I want on a piece of paper:

I want to basically try this, in a few lines of code.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 131

Model 3: Domain Model rethinking

mod <- map2stan(
 alist(
 weight ~ dnorm(mu, sigma),
 mu <- intercept + slope[Diet]*Time,
 slope[Diet] ~ dnorm(0, 2),
 intercept ~ dnorm(0, 2),
 sigma ~ dunif(0, 10)
), data = ml_df, warmup = 500)

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 132

Model 3: Domain Model rethinking

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 133

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 134

Model 3: Domain Model rethinking

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 135

Model 3: Domain Model rethinking

mod <- map2stan(
 alist(
 weight ~ dnorm(mu, sigma),
 mu <- beta_0 + beta_1[Diet]*Time,
 beta_0 ~ dnorm(0, 2),
 beta_1[Diet] ~ dnorm(0, 2),
 sigma <- alpha_0 + alpha_1[Diet]*Time,
 alpha_0 ~ dunif(0, 10),
 alpha_1[Diet] ~ dunif(0, 10)
), data = ml_df, warmup = 500)

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 136

Model 3: Domain Model rethinking

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 137

Freedom

There's something very precious happening here. Instead
of modelling in the feature space we can also keep
models simple by modelling in the model space. All sorts
of features are automatically generated by this DSL that
make creative modelling rather convenient.

The model I've just defined can assign (un)certainty to
each prediction. And since it is generative I could also
input the weight of the chicken and infer the diet!

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 138

Freedom

It's great to be able to model the model generatively.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 139

Freedom

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 140

I could do a whole talk on just this topic but I'll keep it brief

It's great to be able to model the model instead of
pooring the data into a standardized cast-mold.

Python tools like pomegrenate, pymc3 and edward may
be a nice place to invest some knowledge in if these
sorts of models sound like things you'd like to play with.

If this fancies your interest, there's a cool book being
written by Bishop, preview here.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 141

http://www.mbmlbook.com

Conclusion Time

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 142

Conclusion

We saw how;

— feature engineering can still save the day
— it makes sense to come up with systems instead

merely applying algorithms
— simple algorithms can have properties that complex

algorithms are missing out on
— we could care about more than just "error in test set"

if we want to provide a service

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 143

Conclusion

Simple models can actually be rather advanced/smart,
complex models can be rather inarticulate/dumb.

Unfortuntely there seems to be a fear of missing out and
I see people looking for excuses to use DeepModels[tm].
This might be a dangerous pursuit.

There are some problems that require deep learning/
forest methods. Most problems should be tackled with
simpler models first though. Let's celebrate this!

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 144

Thanks for le!ing me speak!

Simple models are easier to;

— understand
— explain
— debug
— maintain
— adapt

Let's use 'em to solve some problems. Questions?
Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 145

