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Why I am Talking about This
You may have heard variants of this quote;

"You should use DeepLearning[tm]"
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Why I am Talking about This
"You should use DeepLearning[tm]"
— Blogs, Reddit, HackerNews and YouTube Stars 

It's getting a bit worrysome. It feels like people are 
focussing more about the tools that they're using than 
the problem they are solving. I've applied deep learning 
in production, but I prefer the simpler models. 

In this talk. I'll explain why.
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Executive Summary

It's not like deep learning isn't amazing, it is, but the 
hype is distracting people from great ideas. 

You may be doing yourself short if you pay too much 
attention to them. You can often win with simpler 
models that have properties that are much nicer in 
situations beyond a jupyter notebook (production). 

My goal is to lure you to the domain of boring, old but 
ultimately beautiful simple models. 
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Topics of Today
— XOR is a linear problem. 
— some simple/great timeseries tricks 
— neat feature generation/sklearn tricks 
— streaming models 
— simple content recommender
— simple video game recommender
— hierarchical domain models 
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The XOR Problem
One of the main arguments you hear against linear 
models is that they cannot deal with the XOR problem. 

Linear models can only split the data into a single line, 
the XOR problem is a problem where the dataset is such 
that you cannot use a single line to split it. 

Every textbook on neural networks has this example 
listed as a reason why NNs beat standard regression. 
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Code: Logistic Regression

Let's confirm that logistic regression might be worse. 

> from sklearn.linear_model import LogisticRegression
> y,X = patsy.dmatrices("type ~ x1 + x2", df)
> pred = LogisticRegression().fit(X, y).predict(X)

The confusion matrix isn't great. 

> confusion_matrix(y,pred)
array([[223,  77],
       [118, 182]])
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Code: Support Vector Machine

Understanding a SVM is harder than applying it. 

> from sklearn.svm import SVC
> y,X = patsy.dmatrices("type ~ x1 + x2", df)
> pred = SVC().fit(X,y).predict(X)

The confusion matrix is better. 

> confusion_matrix(y,pred)
array([[294,   6],
       [  2, 298]])
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Code: Feature Engineering

Feature engineering is as easy to understand/apply.

> df['x1x2'] = df['x1'] * df['x2']
> y,X = patsy.dmatrices("type ~ x1 + x2 + x1x2", df)
> pred = LogisticRegression().fit(X,y).predict(X)

The confusion matrix is better. 

> confusion_matrix(y,pred)
array([[290,  10],
       [  3, 297]])

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 12



Code: Feature Engineering

We just gave a demo of a linear method solving a non-
linear problem by adding a single line of code. 

Because the model is linear we gain properties: 

— more regularisation tricks 
— better interpretability 

As a consultant, it's easier for me to leave a linear model 
at a client if they're just starting with modelling. 
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Next Up
I hope this example spoke to 
your intuition, but these feature 
engineering tricks are actually a 
life saver. 

In the next part, we'll discuss 
feature engineering tricks that 
have gone to production plenty 
of times. 
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Year Ahead Timeseries
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Year Ahead Timeseries
Things about this dataset; 

— it is daily data and we have 4 years of data 
— it is a year ahead prediction
— it is a faily common planning task 
— feature engineering will play a large role
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Dummy Variables Alternative
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Year Ahead Timeseries
Instead of adding dummy variables, we could add smart 
variables. I'll call them smarties with pun intended. We 
want to have something that is more than a mere 
average and something where you can learn from 
2018-04-30 to predict 2018-05-01.

Just like with the XOR problem, the goal is to add simple 
features in order to deal with the non-linearity. 
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Radial Basis Functions
There's these functions we could apply. 
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Radial Basis Functions
You can change  to change the shape. 
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Radial Basis Functions
There's these functions we could apply. 
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Radial Basis Functions
If you create these features, the dataframe will look like:

year  day         y           x01  ...           x12
2016  212  4.375096  4.448581e-01  ...  2.721434e-43
2016  213  4.798139  4.855369e-01  ...  7.305730e-43
2016  214  3.130771  5.272924e-01  ...  1.951452e-42
2016  215  5.115325  5.697828e-01  ...  5.186577e-42
2016  216  4.527225  6.126264e-01  ...  1.371615e-41
2016  217  3.975743  6.554063e-01  ...  3.609210e-41

Put in another way, this is a feature engineering trick.
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Radial Basis Functions
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Effect of Hyperparam 
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Since the model is linear we can use maths to figure out 
which columns might need to go away. Maybe like this: 

                   Residuals:
                       Min       1Q   Median       3Q      Max 
                   -0.68951 -0.14282  0.00027  0.14625  0.61059 

                   Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
                   x1   2.78156    0.05104  54.500  < 2e-16 ***
                   x2  -0.37352    0.10721  -3.484 0.000512 ***
                   x3   1.40336    0.15269   9.191  < 2e-16 ***
                   x4  -1.84918    0.18472 -10.011  < 2e-16 ***
                   x5  -0.60581    0.20559  -2.947 0.003275 ** 
                   x6  -1.58640    0.21831  -7.267 6.66e-13 ***
                   x7  -0.15144    0.22515  -0.673 0.501316    
                   x8   0.11158    0.22721   0.491 0.623450    
                   x9  -0.22219    0.22410  -0.991 0.321660    
                   x10  0.42819    0.21271   2.013 0.044332 *  
                   x11 -0.87599    0.18411  -4.758 2.19e-06 ***
                   x12  1.73673    0.11847  14.659  < 2e-16 ***
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Since the model is linear we can use maths to figure out 
which columns might need to go away. 

There are alternatives to feature selection; 

— sklearn has a bunch of cool ones 
— bayesian regression and critisism could give even 

more insight 
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Nice Properties

— This feature allows for predictions that are many 
timesteps into the future. 

— By approaching this timeseries task with these 
features you can build it on anything that has linear 
regression (H20/SparkML/R::lm). If the system does 
not offer a timeseries module, you can still manage.

— All the magic occurs in the feature engineering step, 
so little mental investment is needed to learn a new 
domain of modelling. 
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Nice Properties

— You can mold this approach. You can make RBF-
features for time of day and for day of year. You can 
create more than 12 features per year or less if your 
usecase allows for it. 

— Since everything is linear it is straightforward to use a 
bayesian estimator for the features. If certain months 
have less datapoints you can quantify the uncertainty. 

— All of these steps are very flexible and very 
interpretable.
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Small War Story

I had to make predictions for a 
client that was in retail, the 
predictions needed to be a year 
ahead. 

One simple observation was that 
we might be able to improve the 
model by calculating these RBF 
features for each day of the 
week seperately. It made sense 
because the seasonality was 
different for day of the week.
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Small War Story

An additional trick was to also generate features for 
holidays. 
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Features with Benefits!

Like before, a very simple feature engineering trick made 
our linear model got a whole lot more powerful. 

One could apply this trick for non-linear models too but 
you loose a bit of control over what happens to the 
features. You may also not realize this feature-trick if 
you're assuming the model solves everything. 

Thing to note: GBM, RF, DNN models won't automagically 
create such features for you. 
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Let's consider a variant of the same problem now. 
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Change of Problem: Before
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Change of Problem: A!er
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Change of Problem
This dataset resembles something common in time-
series; datapoints that are more recent should have 
more influence than the points that are far away. It 
would be nice to perform a regression that is able to 
acknowledge this.

We can force a regression to take this into account in 
sklearn. But let's first discuss the theory behind it a 
little bit. I'll try to keep the maths light.
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Weighted Linear Regression
Normally you want to minimize an error:
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Weighted Linear Regression
Normally you want to minimize an error:

Or: 
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Weighted Linear Regression
Some people use this as a tactic to reduce overfitting. 

This is called Ridge Regression and sklearn has an 
implementation for it. 
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Weighted Linear Regression
Another alternative:

Here  is some score that we come up with that 
determines how important we think the datapoint is.

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 41



Weighted Linear Regression: Nerd Maths

For the math geeks. We have closed form solution.
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Weighted Linear Regression
For the rest of us, scikit learn has this implemented.

mod_skew = LinearRegression()
mod_skew.fit(X_train, y_train,
             sample_weight=train_df['importance'])

It will apply the weights to the errors automatically. Note 
that Support Vector Machine and Logistic models also 
allow you to pass in your own importance weights.
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Weighted Linear Regression
You do need to set your importance weight yourself. You 
could do this from pandas though.

year  day         y    importance
2015    1  4.026617  3.005733e-07
2015    2  4.667070  1.082064e-05
2015    3  2.636582  3.636936e-05
...
2019  361  2.558010  1.591240e+01
2019  362  2.799675  1.593428e+01
2019  363  2.659237  1.595617e+01
Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 44



Weighted Linear Regression
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Weighted Linear Regression

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 46



Weighted Linear Regression
Some things to remember: 

— we've used weights to tell the model we care less 
about the far away history and more about the recent 
history 

— this trick may also be useful to try when you are 
dealing with unbalanced data 

— you can tune the effect of the error as a hyperparam 
in a grid search if you want 
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Optimise Thy Hyperparameters

I like to be able to quickly play with hyperparams (evol!). 

def score(alpha = 300, decay = 0.999):
    # apply pandas transformations
    ml_df = df.pipe(add_rbf_features, alpha = alpha).pipe(add_importance, decay = decay)

    # prepare data for sklearn 
    radial_cols = [c for c in df.columns if 'x' in c]
    train_df, test_df = ml_df[ml_df['set'] == 'train'], ml_df[ml_df['set'] == 'test']
    X_train, X_test = train_df[radial_cols].as_matrix(), test_df[radial_cols].as_matrix()
    y_train, y_test = train_df['skew'], test_df['skew']

    # train model and return the test performance
    mod_skew = LinearRegression()
    mod_skew.fit(X_train, train_df['skew'], sample_weight=train_df['importance'])
    return np.mean(np.abs(mod_skew.predict(X_test) - y_test))

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 48



Weighted Linear Regression
Currently we've filtered away a seasonal trend which we 
assume does not change over time. We care less about 
the history, sure, but we haven't modelled a seasonal 
change. 

Let's fix this, while learning a bit of R at the same time. 
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Interaction Terms
In R, this is how you could define column dependance.

y ~ x01 + x02 + x03 + x04 + x05 + x06 + 
    x07 + x08 + x09 + x10 + x11 + x12
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Interaction Terms
It is possible to define an interaction term too. 

y ~ time*(x01 + x02 + x03 + x04 + x05 + x06 + x
          x07 + x08 + x09 + x10 + x11 + x12)

You will get all the RBF columns as well as all these 
columns multiplied by time. This is kind of like a DSL for 
manual feature selection.
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Interaction Terms
Thanks to patsy you can use this trick in python too. 

formula = "skew ~ y*(x01 + x02 + x03 + x04 + x05 + 
                     x06 + x07 + x08 + x09 + x10 + x11 + x12)"
y_train, X_train = patsy.dmatrices(formula, 
                                   data=ml_df[ml_df['set'] == 'train'])

It is very little code considering what it is all doing. Note 
that patsy automatically converts categorical/string-
columns to encoded numpy arrays.
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Interaction Terms
This is what X_train contains:

DesignMatrix with shape (1095, 26)
  Columns:
    ['Intercept','time','x01','x02','x03','x04',
     'x05','x06','x07','x08','x09','x10','x11',
     'x12','time:x01','time:x02','time:x03','time:x04',
     'time:x05','time:x06','time:x07','time:x08',
     'time:x09','time:x10','time:x11','time:x12']
  Terms:
    ...
  (to view full data, use np.asarray(this_obj))
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Notes on Interaction Terms
Since we risk generating a lot of features this way it may 
be a good idea to see if we really need all these selected 
variables. 

— perhaps consider a Ridge model to prevent overfitting
— you could see this as yet another hyperparameter 
— you could apply T-tests manually (statsmodels)
— you could use sklean.feature_selection 
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The Interaction Effect
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The Interaction Effect
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The Interaction Effect

Some parts are predicted better, other parts worse.
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A Bit of Trial And Error Ensues
After some trial and error I decided to drop the 
importance weights per row and I switched from linear 
regression to a Ridge regression. 

I was afraid about overfitting so I decided to use a 
feature selector from sklearn.

from sklearn.feature_selection import RFE
rfe_mod = Ridge(alpha=0.00001)
mod_feature_cv = RFE(rfe_mod, step=5).fit(X_train, y_train)
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A Bit of Trial And Error Ensues
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Why Not DeepLearning[tm]?

Our example had 3 years of data (  datapoints). 
This is not a whole lot of data for a deep learning model, 
you want to have much more to train all the weights. 
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Why Not DeepLearning[tm]?

Our example had 3 years of data (  datapoints). 
This is not a whole lot of data for a deep learning model, 
you want to have much more to train all the weights. 

Linear models are easy to maintain and debug. 

Linear models actually train kind of fast, which is great. 

Linear models are easy to explain to humans of 
management. 
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Why Not DeepLearning[tm]?

Here comes my favorite reason. 

Linear models are convex! This means that math tells us 
the optimiser will always converge to the maximum fit. 
Tensorboard is a cool tool but it's even cooler if you 
don't need it. 
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Why Not DeepLearning[tm]?

Don't get me wrong. I've put deep learning systems into 
production and I like the algorithms. They solve 
problems I couldn't solve with other algorithms. 

But production is dangerous. We have to code up checks 
to confirm the new data didn't cause the optimiser to 
get stuck in a wrong optimum. 
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Speaking of Production
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Next Up; Streaming
Instead of handling data in a batch setting we 
sometimes need to deal with models in a stream setting. 
Preferably we have models that can adapt and update 
very quickly. 
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Passive Agressive Algorithms
There's a cool trick about linear models: streaming! 
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Passive Agressive Algorithms
There's multiple ways to do this. I'll briefly discuss PA. 

There is an implementation in sklearn, but you could 
also imagine an easy implementation for apache flink or 
spark streaming. 
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Passive Agressive Algorithms
Supppose we are doing a regression for point . 
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Passive Agressive Algorithms
For 1 datapoint, the blue and yellow line are equal in fit. 
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Passive Agressive Algorithms
We can also look at the point in weight space. 
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Passive Agressive Algorithms
Suppose that we had weights from before .
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Passive Agressive Algorithms
We know the shortest path to make  fit perfectly.
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Passive Agressive Algorithms
Let's never update more than a certain stepsize .
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Passive Agressive Algorithms

Let's only update if 

That way the algorithm either does not update (passive) 
or it does a large update (agressive).
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Passive Agressive Algorithms
Nice. We now have an algorithm to update weights of a 
regression in a stream. Turns out that sklearn has an 
implementation of this (both for regression and 
classification).

Note that this streaming approach is interesting when 
you run your algorithm in batch too. The memory needed 
for a streaming approach is much smaller because you 
don't need the entire dataset in memory. 
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Passive Agressive Algorithms

In practice you probably want to introduce a stepsize for 
when the algorithm just started and when it is hot. 

I've started a small experiment: 

— use the sklearn randomdata 
— after 30 datapoints use , before 
— compare to a normal regression on entire dataset 
— sklearn.linear_model.PassiveAggressiveRegressor
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Passive Agressive Algorithms

Note that this approach on a live system is especially 
useful when: 

— you have labels that come in during your stream 
— you want near realtime updating of the weights 
— you might have a world that changes over time, this 

algorithm favors recent datapoints

More details/maths on blog or in the original paper.
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"But, when do you have labels that 
come in a stream?"

— The Audience 
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Let's talk Recommender Systems
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Let's talk Recommender Systems

The items features won't change, but the user features 
we might want to update per click, ASAP!
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Can you spot the regression?
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Speaking of Recommenders

It could make sense to use a deep learning method 
instead (latent space for an item-feature vector is very 
sensible). But which is more important:

— to have a more accurate algorithm that can be 
updated once per day

— to have an algorithm that can update it's belief at 
every mouseclick

Don't just think ML, think about system design.
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Speaking of Recommenders
I wouldn't recommend this collaborative/neural 
approach if you're just starting out though. 

There's a much simpler algorithm that I find to work a 
lot better. 
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Speaking of Recommenders
Let's pretend we're about to build a recommender at the 
dutch BBC. We could calculate what is popular. 
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Speaking of Recommenders
Let's pretend we're about to build a recommender at the 
BBC. We could calculate what is popular. 

 

It would be better instead to calculate. 
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Speaking of Recommenders

 

series_i    series_j     prob_i_and_j   prob_j   rating_score 
-------------------------------------------------------------
content_a   content_b    0.2            0.1      2
content_a   content_c    0.1            0.01     10
content_a   content_d    0.05           0.02     2.5
content_a   content_e    0.4            0.3      1.3333
...
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Speaking of Recommenders

 

Note that this item-item recommender;

— so simple, you could write this algorithm in SQL 
— this figure is easily calculated on a stream of data
— all the parts of the algorithm are interpretable
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Speaking of Recommenders

 

Note that it is easy to turn into a personal one too.
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Speaking of Recommenders
I've seen this algorithm go to production a bunch and it 
was pretty hard to beat. 

There's only one algorithm that beat it when I was at a 
video content company. Hint; the algorithm was even 
simpler. 
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Speaking of Recommenders
I've seen this algorithm go to production a bunch and it 
was pretty hard to beat. 

There's only one algorithm that beat it when I was at a 
video content company. Hint; the algorithm was even 
simpler. 

You can also just recommender the next episode. 
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Speaking of Recommenders
It would be awkward if the video service: 

— never tried recommending next episode first
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Speaking of Recommenders
It would be awkward if the video service: 

— never tried recommending next episode first
— never implemented A/A or A/random baselines
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Speaking of Recommenders
It would be awkward if the video service: 

— never tried recommending next episode first
— never implemented A/A or A/random baselines
— was thinking about using DeepLearning[tm] instead
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Speaking of Recommenders
It would be awkward if the video service: 

— never tried recommending next episode first
— never implemented A/A or A/random baselines
— was thinking about using DeepLearning[tm] instead
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Speaking of Recommenders
It would be awkward if the video service: 

— never tried recommending next episode first
— never implemented A/A or A/random baselines
— was thinking about using DeepLearning[tm] instead
— was not thinking beyond a notebook

Focus on hyped algorithms can be dangerous. Please 
start with the simplest end to end pipeline before 
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Two More Examples
I'll conclude with two more examples that hopefully will 
convince you even more to try modelling things yourself. 
I'll even give you a glimpse of what ML programming 
might look like in the (hopefully) nearby future.

— one example is about video games 
— one example is about chickens
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video games go first

This is our enterprise usecase.
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video games go first

— we need to estimate player skill somehow 
— we need to learn this from a stream of match 

outcomes
— we don't want to wait for a batch algorithm
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a simple solution

The way to make it work is to realize that the skill of a 
player is not a single number, rather a distribution of 
belief of the players skill.
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a simple solution

The next step is to realize that you can combine two 
one-player beliefs of skills into a one two-player belief. A 
prior of belief.
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a simple solution

After a game has been played the two dimensional prior 
is updated depending on what the data shows us. 
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a simple solution

We take a margin over the diagonal and any probability 
mass from the region that disagrees with the match 
outcome.
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a simple solution

We map the resulting probability back to each player. 
These two players now have an updated belief on skill. 
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a simple simulation: two equal players

There are some benefits we get for free. Try it out here.
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a simple simulation: two unequal players

We may learn a lot, or very little. #informationtheory
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a simple simulation: many players
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test of functionality: pokemon!

Vincent D. Warmerdam - [@fishnets88] - GoDataDriven - koaning.io 112



test of functionality: pokemon!

We got our infromation on pokemon from;

Nowadays you can also find the dataset on kaggle.
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test of functionality: pokemon!

If you google around fan reddits you can find information 
on how many turns one pokemon can outlast the other.

Simply said, we can use this to simulate game 
outcomes.
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test of functionality: pokemon!
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test of functionality: pokemon!

          name       mle                   name       mle

128   Magikarp  0.011007        597  Ferrothorn  0.916377

112    Chansey  0.013735        425    Drifblim  0.917240

348     Feebas  0.015845        644      Zekrom  0.919065

171      Pichu  0.019108        537       Throh  0.921175

291   Shedinja  0.020473        482      Dialga  0.928502

439    Happiny  0.026763        149      Mewtwo  0.951472

241    Blissey  0.037009        483      Palkia  0.953823

172     Cleffa  0.042802        288     Slaking  0.956629

234   Smeargle  0.048575        375   Metagross  0.957383

49     Diglett  0.054010        492      Arceus  0.957729
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the general maths of all this

Designing the algorithm became a whole lot easier when 
we admitted that we want to quantify our uncertainty. 
Using distributions as our state, not mere statistics, 
made the algorith rather simple but very smart.
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the general maths of all this

Designing the algorithm became a whole lot easier when 
we admitted that we want to quantify our uncertainty. 
Using distributions as our state, not mere statistics, 
made the algorith rather simple but very smart.

This really fits the bayesian mindset.
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bayesians to the rescue

Everybody notice we kind of get streaming for free?
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bayesians to the rescue

Any ML algorithm that can be updated via 
 is automatically a streaming 

algorithm for ML because it forces the recursive relation;
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bayesians to the rescue

Any ML algorithm that can be updated via 
 is automatically a streaming 

algorithm for ML because it forces the recursive relation;

laymans terms: come up with a sensible update rule for 
a distribution and 'yer done!
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bayesians to the rescue

You could even update it for teamplay. 
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bayesians to the rescue

Here's the thing: the model is a mere histogram. 

And, oh the benefits: 

— we quantify our uncertainty 
— we can apply the model in a streaming setting 
— it's very easy to deploy/understand/debug/test

If you want to come up with such a model, taking a step 
back from hype can really help. 
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One Last Example: Chickens
Suppose that I have a dataset with chickens. 

   weight  Time  Chick  Diet
1      42     0      1     1
2      51     2      1     1
3      59     4      1     1
... 
576    234   18     50     4
577    264   20     50     4
578    264   21     50     4
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One Last Example: Chickens
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Model 1: Base Regression

We could model it with a linear regression (R). 

> model <- lm(weight ~ Time + Diet, data=chickweight)
> model %>% summary()
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  10.9244     3.3607   3.251  0.00122 ** 
Time          8.7505     0.2218  39.451  < 2e-16 ***
Diet2        16.1661     4.0858   3.957 8.56e-05 ***
Diet3        36.4994     4.0858   8.933  < 2e-16 ***
Diet4        30.2335     4.1075   7.361 6.39e-13 ***

No matter what backend you use, the model is all wrong.
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Model 2: R-trick: Nested Regression

> chickweight %>% 
    group_by(Diet) %>% 
    nest() %>% 
    mutate(mod = data %>% map(~ lm(weight ~ Time, data=.)))

    Diet               data      mod
  <fctr>             <list>   <list>
1      1 <tibble [220 x 3]> <S3: lm>
2      2 <tibble [120 x 3]> <S3: lm>
3      3 <tibble [120 x 3]> <S3: lm>
4      4 <tibble [118 x 3]> <S3: lm>

Better, but this is still wrong.
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The problem

In Machine Learning if feels like we can pour data into a 
predefined model but it doesn't feel like we can define 
the model much. 

We're usually constrained to perhaps feature engineering 
and hyperparam tuning (which granted, is good enough 
for lots of problems).
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The problem

In Machine Learning if feels like we can pour data into a 
predefined model but it doesn't feel like we can define 
the model much. 

We're usually constrained to perhaps feature engineering 
and hyperparam tuning (which granted, is good enough 
for lots of problems).

Popular ML libraries don't offer a real DSL for models. 
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Model 3: Domain Model

I wrote what I want on a piece of paper:

I want to basically try this, in a few lines of code.
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Model 3: Domain Model rethinking

mod <- map2stan(
    alist(
        weight ~ dnorm(mu, sigma),
        mu <- intercept + slope[Diet]*Time,
        slope[Diet] ~ dnorm(0, 2),
        intercept ~ dnorm(0, 2),
        sigma ~ dunif(0, 10)
    ), data = ml_df, warmup = 500)
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Model 3: Domain Model rethinking
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Model 3: Domain Model rethinking
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Model 3: Domain Model rethinking

mod <- map2stan(
    alist(
        weight ~ dnorm(mu, sigma),
        mu <- beta_0 + beta_1[Diet]*Time,
        beta_0 ~ dnorm(0, 2),
        beta_1[Diet] ~ dnorm(0, 2),
        sigma <- alpha_0 + alpha_1[Diet]*Time, 
        alpha_0 ~ dunif(0, 10),
        alpha_1[Diet] ~ dunif(0, 10)
    ), data = ml_df, warmup = 500)
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Model 3: Domain Model rethinking
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Freedom

There's something very precious happening here. Instead 
of modelling in the feature space we can also keep 
models simple by modelling in the model space. All sorts 
of features are automatically generated by this DSL that 
make creative modelling rather convenient. 

The model I've just defined can assign (un)certainty to 
each prediction. And since it is generative I could also 
input the weight of the chicken and infer the diet! 
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Freedom

It's great to be able to model the model generatively.
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Freedom
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I could do a whole talk on just this topic but I'll keep it brief

It's great to be able to model the model instead of 
pooring the data into a standardized cast-mold.

Python tools like pomegrenate, pymc3 and edward may 
be a nice place to invest some knowledge in if these 
sorts of models sound like things you'd like to play with. 

If this fancies your interest, there's a cool book being 
written by Bishop, preview here. 
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Conclusion Time
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Conclusion

We saw how; 

— feature engineering can still save the day
— it makes sense to come up with systems instead 

merely applying algorithms
— simple algorithms can have properties that complex 

algorithms are missing out on
— we could care about more than just "error in test set" 

if we want to provide a service
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Conclusion

Simple models can actually be rather advanced/smart, 
complex models can be rather inarticulate/dumb. 

Unfortuntely there seems to be a fear of missing out and 
I see people looking for excuses to use DeepModels[tm]. 
This might be a dangerous pursuit. 

There are some problems that require deep learning/
forest methods. Most problems should be tackled with 
simpler models first though. Let's celebrate this! 
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Thanks for le!ing me speak!

Simple models are easier to; 

— understand
— explain
— debug 
— maintain 
— adapt 

Let's use 'em to solve some problems. Questions?
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