Joy of Simulation

PHASET PHASE2 PHASE3

Collect 7 Profit
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Samples!

For Fun ... and Profit!
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Who is person?

Vincent D. Warmerdam

Data Person @ GoDataDriven in Amsterdam

What we do?

Please bring out your laptops.

We are going to do an experiment in the beginning.
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Today

e randomness: what itis, what it isn't (5 min)

e explain sampling for modelling inference (1 min)
* better tactics for monopoly (5 min)

e sell lego minifigures/ebay (5 min)

e sampling as an optimisation tactic (5 min)

® outsourcing creativity (2 min)

e pokemon related subject (8 min)

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88



Randomness

Before talking about what it is.

We should make sure what it is not.
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What is not randomness?

Are you ready for an experiment?
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What is not randomness?

Go to http://koaning.io/.
Click the blogpost named human entropy.

Await (or read) instructions.
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Human Entropy ...

... Is terrible!

This is why we prefer to use a computer to help us think about
probability. We could also use maths but often using a

computer is just easier.

The goal of this talk is to convince you of this via some fun

examples.
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Inference via Sampling

Being able to sample allows us to not have to resort to maths.

Sometimes we know the characteristics of a system but we'd
ike to know the likelihood of a certain event happening. Again
we can use sampling instead of maths to do the inference for

Uus.

The next slide contains a sampling task containing dice.
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Inference via Sampling

P(E|D), given number of dice, probability of sum of eyes
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Inference via Sampling

This was the most basic example | could think of that drives the
point home.

f you are interested in slightly more advanced approaches
consider checking out PyMC3 or emcee.

've also got a tutorial on a sampling algorithm for a timeseries
task at my blog. It is a bit advanced but it you know scikit learn,
you may learn a thing or two.
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https://pymc-devs.github.io/pymc3/
http://dan.iel.fm/emcee/current/
http://koaning.io/switching-to-sampling-in-order-to-switch.html

Let's consider a fun example of this

Monopoly!




Monopoly
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Monopoly

distribution of monopoly, start = random
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Monopoly

tile name prob

® reading ©.2337069
15 pennsylvania 0.2505849
29 b&o railroad 0.270930

39 short line ©.239452

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88



Monopoly
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Nname

Mediterranean Avenue
Baltic Avenue
Oriental Avenue
Vermont Avenue
Connecticut Avenue
St. Charles Place
States Avenue
Virginia Avenue
Tennessee Avenue
St. James Place
New York Avenue
Kentucky Avenue

color
purple
purple
light_blue
light_blue
light_blue
p1nk

pink

p1nk
orange
orange
orange

red
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Monopoly

rent income vs probability of landing

rent
®

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88

16



Monopoly

income over prob across deed upgrades
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Let's consider something profitable

Lego Minifigures!




Lego Minifigures
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Lego Minifigures

Aquired data for Simpsons Minifigures.

value

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88




Lego Minifigures

Cleanup via sampling.

e Grab 30 prices at random
e (Calculate an average

* Repeat

This should give me an image ot what the mean distribution of
prices might look like.
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Lego Minifigures

bootstrap distributions of set value
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Lego Minifigures

A minifigure costs about 3 euro a piece.
We can sell a set tor 100 euro later.

How likely is it have a full set?

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88

23



Math Overflow to the Rescue?

elements into k non-empty parts. If the parts are to be labelled with the days 1 to k of the year, then any

division into k non-empty parts gives rise to k! divisions into labelled non-empty parts. Hence the number of i
divisions into k labelled non-empty parts is k!S(n, k). There is an inclusion/exclusion formula for S(#, k) Hot.
early in the article (not useful for large k) and there are recurrences later. — André Nicolas
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Answer Your Question
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Lego Minifigures

estimated likelihoods after buying "n" packets
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Lego Minif

igures

estimated increased number of sets per minifigure bought
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Step 3: Profit (... some day)

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88
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Let's talk about general usecases...

Optimisation!




Optimisation!

Sometimes sampling can

Let's take a simple examp
1x1 square.

nelp with an optimisation problem!

e; finding the largest triangle in a

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88
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Let's start with random

rand_vals = np.random.rand(100000, 6)
_ = plt.hist([shoelace(i) for i in rand_vals], 30)

histogram of area sizes of random points

00000
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n
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Learning step

This Probabilistic approach allows us to learn many things from
just sampling!

We've just shown p(X|A > m), if we sample new coordinate

points from this distribution, what does the new area histogram
look like?
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Before

hi ram of area sizes of random points
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histogram of area sizes of biased points
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Next steps

We can repeat the same idea until some form of convergence.
Note that m can be chosen in automatic fashions as well, ie.

m = A.

The cool bonus with these algorithms is that we can use
inference on our simulated data to learn more about the nature

of our optimisation problem.

Genetic algorithms work in a very similar way!
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Next steps

f you're interested in learning more about this you'll want to
see my collegue's talk on this topic.

He'll talk more in detail about these sampling methods for
optimisation. In this specitic talk he adresses how to win at the
boardgame Risk.

"How to Conquer the World"
Thursday (12:00, PyCharm room)

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88
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Things that | am most interested in.

Generative
Methods...

(... to outsource Creativity)



Outsourcing Creativity

Sofar distributions have been rather static. In t

introduce a more markovian way of thinking a
randomness.

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88
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Outsourcing Creativity

Does anybody understand this joke?
my linkedin profile

R, python, javascript, shiny, dplyr, purrr, ditto,
ggplot, d3, canvas, spark, sawk, pyspark, sparklyR,
lodash, lazy, bootstrap, jupyter, vulpix, git,
flask, numpy, pandas, feebas, scikit, pgm, bayes,
h2o.ai1, sparkling-water, tensorflow, keras, onyx,
ekans, hadoop, scala, unity, metapod, gc, c#/c++,
krebase, neo4j, hadoop.
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Outsourcing Creativity

Recruiters cannot distringuish a pokemon name vs. a name of
a technology.

| figured making a python library that can generate pokemon
names might be fun (grabble = tech names as a service).

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88
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Outsourcing Creativity

Recruiters cannot distringuish a pokemon name vs. a name of
a technology.

| figured making a python library that can generate pokemon
names might be fun (grabble = tech names as a service).

... speaking of pokemon as tech names.

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88
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https://cheeaun.github.io/repokemon/
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Outsourcing Creativity

Recruiters cannot distringuish a pokemon name vs. a name of
a technology.

| figured making a python library that can generate pokemon
names might be fun (grabble = tech names as a service).

Never wrote a library before and the problem seemed
interesting enough. | will most likely learn from doing this.

't will probably result in a twitter bot some day.
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Short Term Plan

The whole point of grabble, is to
come up with a better name.




Outsourcing Creativity

The general problem of this hobby project involves generating
believable sequences of tokens.

Things like:

e pokemon names
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Outsourcing Creativity

The general problem of this hobby project involves generating
believable sequences of tokens.

Things like:
e pokemon names

 red hot chilli pepper lyrics
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Outsourcing Creativity

The general problem of this hobby project involves generating
believable sequences of tokens.

Things like:
e pokemon names
 red hot chilli pepper lyrics

e ikea furniture names
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Outsourcing Creativity

The general problem of this hobby project involves generating
believable sequences of tokens.

Things like:

e pokemon names

e red hot chilli pepper lyrics
e ikea furniture names

® notes on a plano
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Outsourcing Creativity

Simplest model:
p(tir1|t:)

For every pair of tokens, keep track how often they occur

together. Once you have a start token, you now have a bag of
words with probabilities to sample from.
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Outsourcing Creativity

More complex model:
p(tit1|ti,ti-1)

Do the same thing but for three tokens.
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Outsourcing Creativity

Models that I'm considering:

VﬂOdi = é"—){" "9@%6%"'965‘%66

mods = (B (b b bt
MOA =) é — {; —> (: 6\ és’é"‘ 6

~X AN
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Outsourcing Creativity

Some pokemon results:

lydo
keen
wqool
ryrys
poole
utcala
youtail
olma
elttyp
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Outsourcing Creativity

Some red hot chilli pepper results:

Can you believe. Hold me please.

By the way I wonder what the wave meant.

White heat 1s screaming 1n the nearest bin.

When I was fortunate I know you must be fat this year.
And eat the sun and a Bottom Dollar.

Fox hole love Pie 1n your house

how let me spin Feather light but you cant move this
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Outsourcing Creativity

Some ikea results:

anapa
frodok
pasig
ripe
latrank
V1S

gsoo
y1rbs
1losseln
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Outsourcing Creativity

Alas, I've only shown you the nice bits.

Most of them are not good.

alrb eaota
ajkge oarterv
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rprnh
alaaaa
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Outsourcing Creativity

One solution: make ensembles.

mOdi = Ll "'—){"L"—)éﬁ "afﬁ""és“bté

mode = t, 3 £ bg— 64‘7 Es— €
e

maoks = 6,~‘ﬁ él—a €, € c— G e— éé
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Outsourcing Creativity

One solution: combine lexicons via different models.

(EX\CON
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Outsourcing Creativity

One solution: add transcribers.

MODb

’Pom=
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Outsourcing Creativity

Another solution; add judges.

S

After sampling 100 samples. Maybe have another model look
at the results and pick the top 10.
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Outsourcing Creativity

One solution; factor graph models?
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Outsourcing Creativity

One solution: heuristics?
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Outsourcing Creativity

One solution; deep models?

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88
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Outsourcing Creativity

Deep models have issues.
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Outsourcing Creativity

| will focus on the tollowing three algorithm domains:

e probibalistic graphical approaches

* heuristic approaches

e deep neural network approaches

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88
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Outsourcing Creativity

There's similar work being done in this field for images.

ol deinbuivun rues g8y oinbuts
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Source: openai.
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https://openai.com/blog/generative-models/

Rough API Plan

1x1 = gb.Lexicon(filepath/iterable)
1x2 = gb.Lexicon(filepath/iterable)

mod1l = gb.Model.OneWayMarkov(n = 2, smoothing = 0.001).fit(1x1)
mod2 = gb.Model.TwoWayMarkov(n = 3)\
.translate(gb.Transcribe.Vowel).fit(1x1)

mod3 = gb.Model.FactorGraph().fit(1x2)

mod1 .generate(20)
mod2.generate(20)

ens = gb.Model .Ensemble( [mod1, mod2])
ens.generate(100) .sort(mod3. judge)

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88
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Dreams

mod4 = mod1.addTransducer(gb.Vowel).fit(1x1)

ens = gb.Model.Ensemble([mod1l, mod2])

ens.finish(['x', 'sx' ‘'sx', 'B', 'A' 'S' 'E'], n = 100)
ens. finish(['*x', 'x', 'x' 'D', 'A'. 'T', 'A'], n = 100)
' 100)

ens. finish(['H', "A', 'x', ‘'x' ‘'x' 'P' 'x'] n
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Creativity? Come see blender!

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88
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Conclusion

Sampling can be a whole lot of fun and sometimes even

profitable. Getting started is easy and you might be suprised
how often it can help you out.

Python is an amazing language for this usecase too.

Think about APl from user first. Optimize Joy!

Shoutout to numpy, cytoolz and generators. Helpful!

Vincent D. Warmerdam - GoDataDriven - koaning.io - @fishnets88
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Thanks for Listening!




