
ML for SparkR:
Just Add Water
Vincent D. Warmerdam, GoDataDriven,
@fishnets88, koaning.io

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 1

Spark and R:
There's Joy Now
Vincent D. Warmerdam, GoDataDriven,
@fishnets88, koaning.io

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 2

Today

—I'll explain what spark is and why to care
—I'll quickly show the sparklyr setup.
—I'll demo a sessionizing usecase (WoW).
—I'll demo how to do H2o on Spark from R.
—I'll explain the why and the benefits.
—I'll hint at a bright future.

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 3

What do you do when you want to blow up a building?

Use a bomb.

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 4

What do you do when you want to blow up a building?

Use a bomb.

What do you do when you want to blow up a bigger building?

Use a bigger, way more expensive, bomb

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 5

What do you do when you want to blow up a building?

Use a bomb.

What do you do when you want to blow up a bigger building?

Use a bigger, way more expensive, bomb

Use many small ones.

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 6

Distributed computation

—connect machines
—store the data on multiple

machine (memory)
—compute word in parallel
—bring code to data
—not the other way around

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 7

Spark is parallel
Even locally: perfect for the >2GB blobs!

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 8

What so special now?

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 9

Example: WoW Churn!

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 10

Spark + R = Joy

Installation is super easy.
devtools::install_github("rstudio/sparklyr")
spark_install(version = "1.6.2")

Don't underestimate how useful this can be for a
local setup. My mac has 4-8 cores available for
spark and 16 Gb of memory.

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 11

Csv to Parquet

You can read .csv or .parquet files.
ddf_pq <- spark_read_parquet(sc,
 name="main_pq",
 "<path>/wowah_data.parquet"
)
You can give the dataframe a table-name, which can
be seen from the Spark UI.
© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 12

Example Log Bit

 char level race charclass zone guild date ts
1 9 70 Orc Hunter The Barrens 79 2008-01-01 2008-01-01 12:02:20
2 9 70 Orc Hunter The Barrens 79 2008-01-01 2008-01-01 12:12:07
3 9 70 Orc Hunter The Barrens 79 2008-01-01 2008-01-01 12:22:40
4 9 70 Orc Hunter The Barrens 79 2008-01-01 2008-01-01 12:32:29
5 9 70 Orc Hunter The Barrens 79 2008-01-01 2008-01-01 12:42:18
6 9 70 Orc Hunter The Barrens 79 2008-01-01 2008-01-01 12:52:47
7 9 70 Orc Hunter Ashenvale 79 2008-01-01 2008-01-01 13:02:29
8 9 70 Orc Hunter Ashenvale 79 2008-01-01 2008-01-01 13:12:18
9 9 70 Orc Hunter Blackfathom Deeps 79 2008-01-01 2008-01-01 13:22:44
10 9 70 Orc Hunter Blackfathom Deeps 79 2008-01-01 2008-01-01 13:32:32
11 9 70 Orc Hunter Blackfathom Deeps 79 2008-01-01 2008-01-01 16:02:31
12 9 70 Orc Hunter Blackfathom Deeps 79 2008-01-01 2008-01-01 16:12:18
13 9 70 Orc Hunter Blackfathom Deeps 79 2008-01-01 2008-01-01 16:22:44
14 9 70 Orc Hunter Blackfathom Deeps 79 2008-01-01 2008-01-01 16:32:32
15 9 70 Orc Hunter Blackfathom Deeps 79 2008-01-01 2008-01-01 16:42:20
16 9 70 Orc Hunter Blackfathom Deeps 79 2008-01-01 2008-01-01 16:52:08
17 9 70 Orc Hunter Shattrath City 79 2008-01-01 2008-01-01 17:02:43

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 13

Example Log Bit

 date ts diff_mins new_session session_id
1 2008-01-01 2008-01-01 12:02:20 NA TRUE 1
2 2008-01-01 2008-01-01 12:12:07 10 FALSE 1
3 2008-01-01 2008-01-01 12:22:40 10 FALSE 1
4 2008-01-01 2008-01-01 12:32:29 10 FALSE 1
5 2008-01-01 2008-01-01 12:42:18 10 FALSE 1
6 2008-01-01 2008-01-01 12:52:47 10 FALSE 1
7 2008-01-01 2008-01-01 13:02:29 10 FALSE 1
8 2008-01-01 2008-01-01 13:12:18 10 FALSE 1
9 2008-01-01 2008-01-01 13:22:44 10 FALSE 1
10 2008-01-01 2008-01-01 13:32:32 10 FALSE 1
11 2008-01-01 2008-01-01 16:02:31 10 FALSE 1
12 2008-01-01 2008-01-01 16:12:18 120 TRUE 2
13 2008-01-01 2008-01-01 16:22:44 10 FALSE 2
14 2008-01-01 2008-01-01 16:32:32 10 FALSE 2
15 2008-01-01 2008-01-01 16:42:20 10 FALSE 2
16 2008-01-01 2008-01-01 16:52:08 10 FALSE 2
17 2008-01-01 2008-01-01 17:02:43 10 FALSE 2

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 14

The code

Window functions FTW!
sessionized_df <- df %>%
 arrange(char, ts) %>%
 group_by(date, char) %>%
 mutate(time_since = ts - lag(ts),
 timegap = ifelse(is.na(time_since), TRUE, time_since > 700)) %>%
 ungroup() %>%
 arrange(ts) %>%
 group_by(char) %>%
 mutate(session_id = cumsum(as.numeric(timegap)))

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 15

GGplot is one ddf %>% collect() away

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 16

Sparklyr: ML

A lot of popular ML libraries are now available.

Much more than in SparkR.

—kmeans
—trees/forests/naive bayes
—logistic regression
—basic feed forward neural network

Plenty of examples listed in the docs.
© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 17

http://spark.rstudio.com/mllib.html

SparklyR heart Rstudio

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 18

But you cannot do everything with just base Spark.

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 19

But you cannot do everything with just base Spark.

Sometimes it's more about the availability of a
certain model because a lot of other things can be
done with SQL (this is even true for SparkR).

For this next bit I'll demo H2o; which is a JVM based
machine learning library that plays well with Spark.

Note that you do not need Hadoop/Spark to use
H2o. You especially don't need a cluster of
machines, even locally there's a speedup.
© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 20

H2o for R
Step by Step
Copy code from blogpost

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 21

http://koaning.io/h2o-encoders-starter.html

Step 1

Download Spark and Sparkling Water.

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 22

Step 2

Start the Sparkling Shell
export SPARK_HOME="/<path>/spark-1.6.0-bin-hadoop1"
export MASTER="local[*]"
./bin/sparkling-shell

This shell can start up Spark and you can easily
import an H2o context from here.

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 23

Step 3

Import H2o from this sparkling-shell.
import org.apache.spark.h2o._
val h2oContext = H2OContext.getOrCreate(sc)
H2o can now make use of Spark resources.

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 24

Step 3

With this connection made, H2o can make use of
Spark as a compute engine as well as access its
dataframes. It should also prompt you with an ip
adress and a port number. You can visit this
endpoint in the browser to see the h2o notebook.

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 25

Step 3, confirm the UI.

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 26

Step 3, continued

What we'll do next:

—generate a dataframe in Sparkling-Shell
—pass it to H2o
—connect H2o from R to the same instance
—apply machine learning libraries from Rstudio

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 27

Step 4

import org.apache.spark.mllib.random.{RandomRDDs => r}
import org.apache.spark.sql.{functions => sf}

def gen_blob() = {
 if(scala.util.Random.nextDouble() > 0.5){
 (0,
 scala.util.Random.nextDouble()*2,
 scala.util.Random.nextDouble(),
 scala.util.Random.nextDouble()*2)
 }else{
 (1,
 1 + scala.util.Random.nextDouble(),
 1 + scala.util.Random.nextDouble()*2,
 1 + scala.util.Random.nextDouble())
 }
}

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 28

Step 4

With that function, let's actually create a DataFrame.
val n = 10000
val rdd = sc.parallelize(1 to n).map(x => gen_blob())

val ddf = rdd.toDF()
val hdf = h2oContext.asH2OFrame(ddf, frameName = "foobar")

This last step is crucial, this H2o frame can be
accessed from Rstudio.
© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 29

Step 5

Start Rstudio with the following libraries.
library(dplyr)
library(ggplot2)
library(h2o)
Install these packages if you didn't have them
before.

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 30

Step 5

Use the same <localhost>:<port> combination as
the one that was prompted from the sparkling-shell.
client <- h2o.init(ip = 'localhost', port=54321)
h2o.ls()
rddf <- h2o.getFrame("foobar")

Note that we're getting the frame that we've created
before.
© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 31

Step 5

This rddf is not a Spark DataFrame or a normal R
DataFrame.
> typeof(rddf)
[1] "environment"

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 32

Step 5

You can also reach this H2oFrame from the UI.

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 33

Step 5

What can H2o offer us now next to Sparklyr?

—wider range of ML models
—decent tools for hyperparameter tuning
—output of model is an actual downloadable .jar

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 34

Step 6

Let's apply an autoencoder from H2o.
mod_nn <- h2o.deeplearning(
 x = c("_2", "_3", "_4"),
 training_frame = rddf,
 hidden = c(4,2),
 epochs = 100,
 activation = 'Tanh',
 autoencoder = TRUE
)
© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 35

Step 6

Apply this model and visualize.
features <- h2o.deepfeatures(mod_nn, rddf, layer=2)

pltr_nn <- features %>%
 as.data.frame %>%
 cbind(rddf %>% as.data.frame %>% .[1])

colnames(pltr_nn) <- c("l1", "l2", 'label')

ggplot() +
 geom_point(data=pltr_nn, aes(l1, l2, colour = label), alpha = 0.5) +
 ggtitle("encoder does a good job of splitting labels via clustering")

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 36

Step 6: Output

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 37

Step 6: Gradient Boosted Search

hyper_params = list(ntrees = c(100, 1000),
 max_depth = 1:4,
 learn_rate = seq(0.001,0.01),
 sample_rate = seq(0.3,1))

search_criteria = list(strategy = "RandomDiscrete",
 max_runtime_secs = 600,
 max_models = 100,
 stopping_metric = "AUTO",
 stopping_tolerance = 0.00001,
 stopping_rounds = 5,
 seed = 123456)

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 38

gbm_grid <- h2o.grid("gbm", grid_id = "mygrid",
 x = c("_2", "_3", "_4"),
 y = c("_1"),
 training_frame = rddf, nfolds = 5,
 distribution="gaussian",
 score_tree_interval = 100,
 seed = 123456,
 hyper_params = hyper_params,
 search_criteria = search_criteria)

gbm_sorted_grid <- h2o.getGrid(grid_id = "mygrid", sort_by = "mse")

You can view the results via;
gbm_sorted_grid@summary_table %>% View
© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 39

Select the best model

best_model <- h2o.getModel(gbm_sorted_grid@model_ids[[1]])

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 40

POJO
Making Friends with Engineers
h2o.download_pojo(
 best_model,
 path = "/tmp/",
 getjar=TRUE
)
© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 41

The Future?

In practice, you want the engineer and the scientist
to be friends and this h2o + sparklyr stack really
makes a lot of sense for production.

You can google around and get an impression that
I'm not the only person who is considering this path
to be valueable.

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 42

The Future?

Github: jjallaire/sparklingwater.
library(sparklyr)
library(sparklingwater)
sc <- spark_connect(master = "local")

h2o_context(sc)
mtcars_tbl <- copy_to(sc, mtcars, overwrite = TRUE)
mtcars_hf <- h2o_frame(mtcars_tbl)

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 43

The Future?

Github: jjallaire/sparklingwater.

© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 44

Conclusion

Sparklyr is a clear win, H2o can help fill in some
gaps. I expect the two to become better at talking to
eachother in the future.

Don't give me any credit as I'm just a user. Be sure
to high-five Rstudio today.

I'll be around the conf, AMA!

Thanks for listening! Code is on the blog.
© Vincent D. Warmerdam, GoDataDriven, @fishnets88, koaning.io 45

http://koaning.io/sparling-water-for-sparkr.html

