New Possibilities with SparkR

Big Data without leaving R

SparK

Vincent D. Warmerdam @ GoDatalDriven

Who is this guy

* Vincent D. Warmerdam

e data guy @ GoDataDriven

e from Amsterdam

e avid python, R and js user.

® give open sessions in R/Python
e minor user of scala, julia, clang.
* hobbyist gamer. Blizzard fanboy.

* in no way affiliated with Blizzard.

Today

Describe a cool, but bilg, data task
Explain downsides of 'normal’' R
Explain 1dea behind SparkR

Explain how to get started with SparkR
Show some SparkR code

. Quick Conclusion
if(time) Demo
if(time) Questions

0O J O Ol & W N =

TL;DR

Spark is a very worthwhile tool that is opening up for R.

f you just k

now R, it feels to

in the cloud. It performs, sca
normal R, although the api is limited.

oe a preferable way to do bi

g data

es and feels like writing coc

ein

This project has gained enormous traction, is being used in

many impressive production systems and you can expect more
features in the future.

1. The task and data

We're going to analyze a video game

World of Warcraft Auction House

Browse Auctions
Leyvel Range
‘kingsblood . - ' Usable ltems Search | Display on Character

Filters Rarity & | Time Left » Seller 3 | Current Bid 3
Weapon e i
e o e ——— . Kingsblood Very Long Eluma

Armof

Buyout

Container
: s = = Al Kingsblood Very Long Bobdobbs
Consumable :

— —_—
O O

Buyout

Trade Goods

Kingsblood Very Long Direwolves
Projectile

tQui.vr:_l | S K]nssb]ood Very Long Pokenyou

Recipe

Reagent ‘» Kingsblood Very Long Bobdobbs

Miscellaneous

Kingsblood Very Long Riftt
Kingsblood Very Long Direwolves
Kingsblood Paulairine Buyout

Bid A L 60 00 Bid ' Bijyou-t

N

Items of Warcraft

ltems/gear are an important part of the
game. You can collect raw materials
and make gear from it. Another
alternative is to sell it.

e you can collect virtual goods

e you trade with virtual gold

e to buy cooler virtual swag

® fo get better, faster, stronger

e collect better virtual goods

WoW datais cool!

e now about 10 million of players

e 100+ identical wow instances (servers)

e real world economic assumptions still hold

e perfect measurement that you don't have in real life
®* cach serveris an identical

 these worlds are independant of eachother

It is cool, it also has a problem.

The Blizzard APl gave me snapshots every two hours of the
current auction house status.

One such snapshotis a 2 GB blob op json data.

After a few days the dataset does not fit in memory. Even one
snapshot is something a single threaded process doesn't like.

R seems to fall short here.

10

2. The technical
problem

This problem occurs often

This is a BIG DATA problem

'When your data is too big to analyze on a single computer.'
- lan Wrigley, Cloudera

12

What do you do when you want to blow
up a building?

Use a bomb.

What do you do when you want to blow
up a building?

Use a bomb.

What do you do when you want to blow
up a bigger building?

Use a bigger, way more expensive, bomb

What do you do when you want to blow
up a building?

Use a bomb.

What do you do when you want to blow
up a bigger building?

Use many small ones.

3. The technical
problem

Take the many small bombs approach

Distributed disk
(Hadoop/Hdfs)

® connect machines
e store the data on multiple disks

e compute map-reduce jobs in
parallel

* bring code to data
* notthe other way around

e old school: write map reduce jobs

master/name
NOOE
Slave S\owve/
o) (o) (s

NoDE NoDE NODE

MG SN = NOWYL NODE
Slove = doXa NODE

L

17

Why Spark?

Spar

"It's like MapReduce on Hadoop but preferable.”

18

Why Spark?

"Run programs u

memory, or 10x

Attemps to do al
Can cache to dis

o to 100x faster than Hadoop MapReduce in

faster on disk."

120 110

w
(-

¥ Hadoop
Spark

W
(-

Running time (s)
(@)
(-

o

computation in memory.

< if needed.

19

Spark is parallel

Even locally

Processes: 228 total, 3 running, 3 stuck, 222 sleeping, 1345 threads

Load Avg: 3.24, 2.29, 1.87 C(PU usage: 96.94% user, 2.76% sys, 0.29% idle
SharedLibs: 90M resident, OB data, 14M linkedit.

MemRegions: 83992 total, 7019M resident, 76M private, 13G shared.

PhysMem: 13G used (2546M wired), 632M unused.

WM: 608G vsize, 1312M framework vsize, 3013284(@) swapins, 3316559(@) swapouts.
Networks: packets: 29603472/34G in, 11073080/2276M out.

Disks: 3185216/85G read, 3042468/109G written.

PID COMMAND %CPU TIME #TH #WQ #PORT #MREGS MEM

48026 java 775.5 11:21.01 95/8 0O 236- 2339 941M-
36104 top 18.9 42:47.01 1/1 0 45 56 7904K
118 WindowServer 2.4 02:45:02 4 0 732 6561- S581M-

Under the hood; why shift Hadoop ->
Spark

it doesn't persist full dataset to HDFS
e distributed in memory -> no disk io
e |azy eval and the DAG

e relatively easy simple to code in

e DataFrame/ML/Graph/Streaming support

4. How to set up Spark

It's not that hard

Spark Provisioning: Locally

Download Spark here. Unzip. Then:

$ /path/to/spark-1.5.1/bin/sparkR
You can set some flags it you want to have more power.

$./sparkR —-driver-memory 5g

23

http://spark.apache.org/downloads.html

Spark Provisioning: Locally

Running it in Rstudio is only a little more work.

First configure syspaths.

spark_link <- "spark://codes—-MacBook-Pro.local:7Q77"

spark_path <- "/Users/code/Downloads/spark-1.5.0-bin-hadoop2.6"
spark_lib_path <- paste@(spark_path, '/R/1lib')

spark_bin_path <- paste@(spark_path, '/bin')

.libPaths(c(.1ibPaths(), spark_lib_path))
Sys.setenv(SPARK_HOME = spark_path)
Sys.setenv(PATH = paste(Sys.getenv(c('PATH')), spark_bin_path, sep=':"))

24

Spark Provisioning

Running it in Rstudio is only a little more work.

Next, just import libraries.

library(SparkR)
library(ggplot2)
library(magrittr)

sc <- sparkR.init("local[2]", "SparkR",6 spark_path,
list(spark.executor.memory="8g"))
sqlContext <- sparkRSQL.init(sc)

What about if | have a huge dataset?

You could go for Databricks, or you

AWS. Other p

atforms also have of

comes with Spark.

bage

bin

build
conf

core
data/mllib
dev
docker

docs

—

examples

external

[SPARK-7801] [BUILD] Updating versions to SPARK 1.5.0

[SPARK-7733] [CORE] [BUILD] Update build, code to use Java 7 for 1.

[SPARK-€

5] Upgrade to Maven 3.3.3

[SPAR

71] Increase default driver memory

SPARK-8880]

Fix confusing Stage.attemptld member variable

[SPARK-8758] [MLLIB] Add Python user guide for Pc

QPAR
SPAI

(-7977] [BUILD] Disallowing printin

Support for Mesos DockerlInfo

SPARK-8863] [EC2] Check oy from :

[SPARK-7977] [BUILD] Disallowing printin

SPARK-7977] [BUILD] Disallowing printin

a month ago

a month ago

verlterationClustering

3] [MLLIB] Implementation of 1-sample, two-sided, Kolmogoro...

credentials if there...

could set up your own on
erings but AWS support

You can clone with HTTPS, SSH
or Subversion. ®

(& Clone in Desktop

<> Download ZIP

Spark Provisioning

On AWS it's just is a one-liner.

./spark—-ec2 \

——key—-pair=pems \
——1identity-file=/path/pems.pem \
——region=eu-west-1 \

-s 8 \

——instance-type c3.xlarge \
——Copy—-aws—-credentials

launch my-spark-cluster

This starts up the whole cluster, takes 10-20 mins.

27

Spark Provisioning

f you want to turn it oft.

./spark—-ec2 \
——key-pair=pems \
——identity-file=/path/pems.pem \
——region=eu-west-1 \

destroy my-spark-cluster

This brings it all back down, warning: potentially deletes data.

Spark Provisioning

It you want to log into your machine.

./spark—-ec2 \
——key-pair=pems \
——identity-file=/path/pems.pem \
——region=eu-west-1 \

login my-spark-cluster

't does the ssh for you.

29

Reading from S$3

Reading in . json file from amazon.

NO need for credentials with ——copy-aws-credentials
filepath <- "s3n://<aws_key> :<aws_secret>@wow-dump/total. json"

ddf <- sqglContext 7%>%
textFile(filepath, 'json') %>%
cache()

These credentials can be automatically retreived if boot was via
——Ccopy—-aws—credentials.

30

5. Writing SparkR

Feels like R code

The ddf is designed to teel like normal R.
ddf$date <- ddf$timestamp %>% substr(1, 10)

f you use Rstudio, you'll notice that autocomplete works tor

distributed dataframes as well.

32

Lost of R functions

Many SparkR functions work like normal R functions but on
distributed DataFrames. Not everything is supported but

currently there is support for:

%in

1felse
regex
datetimes
levenshteiln
glm

33

Different functions?

> ?71felse
P2

Files Plots Packages Help Viewer

- AN

g— - d -

ifelse -

Help on topic 'ifelse' was found in the following packages:

ifelse

(in package SparkR in library /Users/code/Downloads/spark-1.5.0-bin-hadoop2.6/R/lib)
Conditional Element Selection

(in package base in library /Library/Frameworks/R .framework/Resources/library)

34

Find most frequent wow items

SparkR comes with dplyr-like functions.

agg <— ddf 7»>%
groupBy(ddf$item) %>%
summarize(count = n(ddf$item)) %>%
collect

freq_df <- agg|order(-agg$count),]| %>% head(30)
freq_items <- freq_df$item

Note that agg is a normal (nondist) dataframe.

35

Auctioneers vs. economy

agg <— ddf »>%
groupBy(ddf$ownerRealm, ddf$side) %>%
summarize(n_auctioners = n(ddf$ownerRealm),
gold = sum(ddf$buyout)/10000) %>%
collect

agg$side <«- ifelse(aggPside == 'alliance',
'the alliance', 'da horde')

ggplot(data=agg) +
geom_point(aes(n_auctioners, gold, colour=side)) +
ggtitle('size of wow auction house economy')

36

25000

size of wow auction house economy

100000

125000

37

The 1% of WOW

pltr <-— ddf 7%>%
filter(ddf$owner != '?2?2') %>%
group_by(ddf$owner) %>%
summarize(n = countDistinct(ddf$auc), s = sum(ddf$buyout)) %>%
arrange(desc(.$n)) %>%
collect

pltr$cum <— cumsum(pltr$s)/sum(pltrPs)
pltr$per <- 1:nrow(pltr)/nrow(pltr)

38

The 1% of WOW

Local Benchmarks

| have an 8-core mac; spark notices this.

> start_time <- Sys.time()

> ddf <- sqlContext 7%>%
loadDF (' /Users/code/Development/wow-data/complete-day. json',
cache

> ddf %>7% count

[1] 7250322

> Sys.time() - start_time

Time difference of 1.103298 mins

This is a 2 GB tile. Pretty fast for local development.

'json') %>%

40

Local Benchmarks

Spark also has a caching system.

> start_time <- Sys.time()

> ddf %>7% count

(1] 7250322

> Sys.time() - start_time

Time difference of 0.4435373053 secCs

The second time the operation runs faster because of it.

41

Visualisation of the
DAG

You can view the DAG in Spark Ul.

The job on the right describes an
aggregation task.

You can find this atmaster—ip:4040.

42

Crunch in Spark, analyse in R

ddf$gold_per_single <- ddf$buyout/ddf$quantity/10000

pltr <- ddf 7%>%

filter(ddf$side != 'neutral') %>%
filter(ddf$item == freq_items|[5]) %>%
collect

pltr$quantity <- pltr$quantity %>% as.factor

pltr <- subset(pltr,

pltr$gold_per_single < quantile(pltr$gold_per_single, probs = 0.95)
)

43

effect of stack size, spirit dust

15000 -

10000 -

count

5000 -

0- -__I— -

w
SN
o
>
1

44

t dust

=
Q.
"
)
N

effect of stack s

alliance horde
T —— -3
I— ® . _HH_' s -2
e — P | I - ®
— - -~
(]] —] - \.{H
T _V — — -9
e . —_— — -3
* o — . * —_— — -®
. — — -
— - L QCIH—’ -
L * v wos e e -2
e — — —Uu [-
*® —_— p— > » —_— S -
- — — - -~
L — @ e o s - ©
— ¢ 6% oceeem b -0
B E— .] . _— |— - <
ames o . ae -m -
R - - o ® — -
- e - a9 56 66 EBG ® - —
I | I | I
< ol < [aV o

m_mc_m(dmalv_m@

quantity

45

Market size vs price’

yout

m_bu

side
horde

the alliance

" for spirit dust we check for every server what the market quantity is and the mean buyout

46

Market size vs. price

We repeat for every product by calculating it's 8; regression

coefficient:

where z is

_ Cov(z,y)
fr = Var(x)

market size and y is price. It 8; < 0 then we may

have found

a product that is sensitive to market production.

47

GLM in Spark

freq_items <-— ddf 7%>%
groupBy(ddf$item) %>%
summarize(count = n(ddf$item)) %>%
orderBy(-.$count) %>%
select(ddf$item) %>%
head(100)

ml_ddf «<- ddf %>%
filter(ddf$item %in% freq_items$item) %>%
group_by(ddf$item, ddf$side, ddf$ownerRealm) %>%
summarize(n = sum(ddf$quantity), p = mean(ddf$buyout/ddf$quantity/10000))

d_mod <- glm(p ~ n, data = ml_ddf)

48

GLM in Spark

> d_mod 7%>% summary
$coefficients

Estimate
(Intercept) 78.08618816
N -0.01784204

This result makes sense; but is not that interesting. | miss
dplyr: :do here.

49

A most common pattern

ml _df <- ml _ddf 7%>7% collect

SparkR.stop()
detach("package:SparkR", unload=TRUE)

library(dplyr)

res <— ml_df 7%>%
group_by(item) %>%
do(mod = Im(p ~ n, data = .) %>% coefficients %>%
mutate(b1l = mod %>% as.numeric)

12]) %>%

Most interesting result

Distribution of 100 betas: they're not all negative!

count

b1

51

Conclusion

OK

But clusters cost more, correct?

53

Cheap = Profit

Isn't Big Data super expensive?

54

Cheap = Profit

Isn't Big Data super expensive?

Actually, no

Cheap = Profit

Isn't Big Data super expensive?

Actually, no

S3 transters within same region = free.
40 GB x $0.03 per month = $1.2

$0.239 x hours x num_machines

It | use this cluster for a day.

$0.239 x 6 x 9 = $12.90

56

Conclustion

Spark is worthwhile tool.

f datasets become bigger this tool helps to keep the
exploration teel interactive, which has always felt is the most
powerful part of R/Rstudio.

57

Final Remarks

e don'tforgetto turn machines off

e please beware the inevitable hype

 only bother if your dataset is too big

o dplyr/tidyr/baseR has more flexible (better) api
* more features to come

e more features are needed

59

Questions?

The images

Some images from my presentation are from the nounproject.

Credit where credit is due:

 video game controller by Ryan Beck
* inspection by Creative Stall

® Shirt Size XL by José Manuel de Laa
Other content online:

e epic orc/human fight image

61

https://thenounproject.com/
http://www.judao.com.br/8/wp-content/uploads/2013/08/WoW-Orc-vs-Paladin.jpg

Demo Code

. /spark-ec?2

——key-pair=spark-df
——identity-file=//Users/code/Downloads/spark—-df.pem
——region=eu-west-1 -s 2

——1instance-type c3.xlarge

——copy—-aws—credentials launch my-spark-cluster

. /spark-ec?2

——key-pair=spark-df
——1identity-file=//Users/code/Downloads/spark-df.pem
——region=eu-west-1 -s 2

——copy—aws—-credentials login my-spark-cluster

curl icanhazip.com
passwd rstudio

62

vars <- tail(read.csv('/root/spark-ec2/ec2-variables.sh'), 2)
colnames(vars) <- 'a
vars$a <- as.character(vars$a)
for(i in gsub("export ", "", vars$a)){

eval (parse(text = paste@(gsub("=", "='"_ i), "'")))

J

filepath <- paste@("s3n://",
AWS_ACCESS_KEY_ID, ":"
AWS_SECRET_ACCESS_KEY,
"@wow—-dump/chickweight. json")
ddf <- loadDF(sqglContext, filepath, 'json')

/

ddf
head(ddf)
collect(summarize(m = mean(ddf$weight), group_by(ddf ,ddf$Diet)))

. /spark—-ec?2

——Key-pailr=spark-df
——identity-file=//Users/code/Downloads/spark-df.pem
——region=eu-west-1 -s 2

——Ccopy—aws—credentials destroy my-spark-cluster

64

