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Who is this guy

• Vincent D. Warmerdam

• data guy @ GoDataDriven

• from Amsterdam

• avid python, R and js user.

• give open sessions in R/Python

• minor user of scala, julia, clang.

• hobbyist gamer. Blizzard fanboy.

• in no way affiliated with Blizzard.
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Today
1. Describe a cool, but big, data task 
2. Explain downsides of 'normal' R
3. Explain idea behind SparkR
4. Explain how to get started with SparkR
5. Show some SparkR code 
6. Quick Conclusion 
7. if(time) Demo
8. if(time) Questions
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TL;DR
Spark is a very worthwhile tool that is opening up for R.

If you just know R, it feels to be a preferable way to do big data 
in the cloud. It performs, scales and feels like writing code in 
normal R, although the api is limited. 

This project has gained enormous traction, is being used in 
many impressive production systems and you can expect more 
features in the future.
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1. The task and data
We're going to analyze a video game
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World of Warcraft Auction House
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Items of Warcraft

Items/gear are an important part of the 
game. You can collect raw materials 
and make gear from it. Another 
alternative is to sell it.

• you can collect virtual goods

• you trade with virtual gold

• to buy cooler virtual swag 

• to get better, faster, stronger

• collect better virtual goods 
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WoW data is cool!

• now about 10 million of players

• 100+ identical wow instances (servers)

• real world economic assumptions still hold

• perfect measurement that you don't have in real life

• each server is an identical

• these worlds are independant of eachother
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It is cool, it also has a problem.

The Blizzard API gave me snapshots every two hours of the 
current auction house status. 

One such snapshot is a 2 GB blob op json data. 

After a few days the dataset does not fit in memory. Even one 
snapshot is something a single threaded process doesn't like.

R seems to fall short here. 
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2. The technical 
problem

This problem occurs often
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This is a BIG DATA problem

'When your data is too big to analyze on a single computer.'
- Ian Wrigley, Cloudera
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What do you do when you want to blow 
up a building?

Use a bomb. 
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What do you do when you want to blow 
up a building?

Use a bomb. 

What do you do when you want to blow 
up a bigger building?

Use a bigger, way more expensive, bomb
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What do you do when you want to blow 
up a building?

Use a bomb. 

What do you do when you want to blow 
up a bigger building?

Use a bigger, way more expensive, bomb

Use many small ones.
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3. The technical 
problem

Take the many small bombs approach
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Distributed disk 
(Hadoop/Hdfs)

• connect machines 

• store the data on multiple disks

• compute map-reduce jobs in 
parallel 

• bring code to data

• not the other way around

• old school: write map reduce jobs
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Why Spark?

"It's like MapReduce on Hadoop but preferable."
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Why Spark?

"Run programs up to 100x faster than Hadoop MapReduce in 
memory, or 10x faster on disk."

Attemps to do all computation in memory. 
Can cache to disk if needed.
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Spark is parallel
Even locally

20



Under the hood; why shift Hadoop -> 
Spark

• it doesn't persist full dataset to HDFS

• distributed in memory -> no disk io

• lazy eval and the DAG 

• relatively easy simple to code in

• DataFrame/ML/Graph/Streaming support
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4. How to set up Spark
It's not that hard
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Spark Provisioning: Locally

Download Spark here. Unzip. Then:
$ /path/to/spark-1.5.1/bin/sparkR 

You can set some flags if you want to have more power. 
$ ./sparkR --driver-memory 5g

23

http://spark.apache.org/downloads.html


Spark Provisioning: Locally

Running it in Rstudio is only a little more work. 

First configure syspaths. 
spark_link <- "spark://codes-MacBook-Pro.local:7077" 
spark_path <- "/Users/code/Downloads/spark-1.5.0-bin-hadoop2.6"
spark_lib_path <- paste0(spark_path, '/R/lib')
spark_bin_path <- paste0(spark_path, '/bin')

.libPaths(c(.libPaths(), spark_lib_path)) 
Sys.setenv(SPARK_HOME = spark_path) 
Sys.setenv(PATH = paste(Sys.getenv(c('PATH')), spark_bin_path, sep=':')) 
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Spark Provisioning

Running it in Rstudio is only a little more work. 

Next, just import libraries.
library(SparkR) 
library(ggplot2)
library(magrittr)

sc <- sparkR.init("local[2]", "SparkR", spark_path, 
                  list(spark.executor.memory="8g"))
sqlContext <- sparkRSQL.init(sc) 
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What about if I have a huge dataset?

You could go for Databricks, or you could set up your own on 
AWS. Other platforms also have offerings but AWS support 
comes with Spark.
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Spark Provisioning

On AWS it's just is a one-liner.
    ./spark-ec2 \
    --key-pair=pems \
    --identity-file=/path/pems.pem \
    --region=eu-west-1 \
    -s 8 \
    --instance-type c3.xlarge \
    --copy-aws-credentials
    launch my-spark-cluster

This starts up the whole cluster, takes 10-20 mins.
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Spark Provisioning

If you want to turn it off. 
./spark-ec2 \
--key-pair=pems \
--identity-file=/path/pems.pem \
--region=eu-west-1 \
 destroy my-spark-cluster

This brings it all back down, warning: potentially deletes data.
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Spark Provisioning

If you want to log into your machine. 
./spark-ec2 \
--key-pair=pems \
--identity-file=/path/pems.pem \
--region=eu-west-1 \
 login my-spark-cluster

It does the ssh for you.
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Reading from S3

Reading in .json file from amazon. 
# no need for credentials with --copy-aws-credentials
filepath <- "s3n://<aws_key>:<aws_secret>@wow-dump/total.json"

ddf <- sqlContext %>% 
  textFile(filepath, 'json') %>% 
  cache()

These credentials can be automatically retreived if boot was via 
--copy-aws-credentials. 
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5. Writing SparkR
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Feels like R code
The ddf is designed to feel like normal R. 

ddf$date <- ddf$timestamp %>% substr(1, 10)

If you use Rstudio, you'll notice that autocomplete works for 
distributed dataframes as well. 
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Lost of R functions
Many SparkR functions work like normal R functions but on 
distributed DataFrames. Not everything is supported but 
currently there is support for: 
%in% 
ifelse 
regex
datetimes
levenshtein
glm
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Different functions?
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Find most frequent wow items
SparkR comes with dplyr-like functions. 
agg <- ddf %>% 
  groupBy(ddf$item) %>% 
  summarize(count = n(ddf$item)) %>% 
  collect

freq_df <- agg[order(-agg$count),] %>% head(30)
freq_items <- freq_df$item

Note that agg is a normal (nondist) dataframe. 
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Auctioneers vs. economy
agg <- ddf %>% 
  groupBy(ddf$ownerRealm, ddf$side) %>%
  summarize(n_auctioners = n(ddf$ownerRealm), 
            gold = sum(ddf$buyout)/10000) %>% 
  collect

agg$side <- ifelse(agg$side == 'alliance', 
                   'the alliance', 'da horde')

ggplot(data=agg) + 
  geom_point(aes(n_auctioners, gold, colour=side)) + 
  ggtitle('size of wow auction house economy')
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The 1% of WOW
pltr <- ddf %>% 
  filter(ddf$owner != '???') %>% 
  group_by(ddf$owner) %>% 
  summarize(n = countDistinct(ddf$auc), s = sum(ddf$buyout)) %>%
  arrange(desc(.$n)) %>% 
  collect

pltr$cum <- cumsum(pltr$s)/sum(pltr$s)
pltr$per <- 1:nrow(pltr)/nrow(pltr)
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The 1% of WOW
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Local Benchmarks
I have an 8-core mac; spark notices this. 
> start_time <- Sys.time()
> ddf <- sqlContext %>% 
    loadDF('/Users/code/Development/wow-data/complete-day.json', 'json') %>% 
    cache
> ddf %>% count
[1] 7250322
> Sys.time() - start_time
Time difference of 1.103298 mins

This is a 2 GB file. Pretty fast for local development.
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Local Benchmarks
Spark also has a caching system. 

> start_time <- Sys.time()
> ddf %>% count
[1] 7250322
> Sys.time() - start_time
Time difference of 0.44373053 secs

The second time the operation runs faster because of it. 
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Visualisation of the 
DAG

You can view the DAG in Spark UI. 

The job on the right describes an 
aggregation task.

You can find this at master-ip:4040. 
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Crunch in Spark, analyse in R
ddf$gold_per_single <- ddf$buyout/ddf$quantity/10000

pltr <- ddf %>% 
  filter(ddf$side != 'neutral') %>% 
  filter(ddf$item == freq_items[5]) %>% 
  collect

pltr$quantity <- pltr$quantity %>% as.factor

pltr <- subset(pltr, 
  pltr$gold_per_single < quantile(pltr$gold_per_single, probs = 0.95)
)
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effect of stack size, spirit dust
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effect of stack size, spirit dust
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Market size vs price1

1 for spirit dust we check for every server what the market quantity is and the mean buyout
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Market size vs. price

We repeat for every product by calculating it's  regression 
coefficient:

where  is market size and  is price. If  < 0 then we may 
have found a product that is sensitive to market production.

47



GLM in Spark
freq_items <- ddf %>% 
  groupBy(ddf$item) %>% 
  summarize(count = n(ddf$item)) %>% 
  orderBy(-.$count) %>% 
  select(ddf$item) %>% 
  head(100)

ml_ddf <- ddf %>% 
  filter(ddf$item %in% freq_items$item) %>% 
  group_by(ddf$item, ddf$side, ddf$ownerRealm) %>% 
  summarize(n = sum(ddf$quantity), p = mean(ddf$buyout/ddf$quantity/10000))

d_mod <- glm(p ~ n, data = ml_ddf)
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GLM in Spark
> d_mod %>% summary
$coefficients
               Estimate
(Intercept) 78.08618816
n           -0.01784264

This result makes sense; but is not that interesting. I miss 
dplyr::do here. 
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A most common pattern
ml_df <- ml_ddf %>% collect

SparkR.stop()
detach("package:SparkR", unload=TRUE)

library(dplyr)
res <- ml_df %>% 
  group_by(item) %>% 
  do(mod = lm(p ~ n, data = .) %>% coefficients %>% .[2]) %>% 
  mutate(b1 = mod %>% as.numeric)
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Most interesting result
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Conclusion

52



OK
But clusters cost more, correct?
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Cheap = Profit

Isn't Big Data super expensive? 
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Cheap = Profit

Isn't Big Data super expensive? 

Actually, no

55



Cheap = Profit

Isn't Big Data super expensive? 

Actually, no

S3 transfers within same region = free. 
40 GB x $0.03 per month = $1.2 
$0.239 x hours x num_machines

If I use this cluster for a day. 
$0.239 x 6 x 9 = $12.90
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Conclustion
Spark is worthwhile tool.

If datasets become bigger this tool helps to keep the 
exploration feel interactive, which has always felt is the most 
powerful part of R/Rstudio.
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Final Remarks
• don't forget to turn machines off 

• please beware the inevitable hype

• only bother if your dataset is too big

• dplyr/tidyr/baseR has more flexible (better) api 

• more features to come

• more features are needed
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Demo

59



Questions?
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The images
Some images from my presentation are from the nounproject. 

Credit where credit is due;
• video game controller by Ryan Beck

• inspection by Creative Stall 

• Shirt Size XL by José Manuel de Laá

Other content online: 

• epic orc/human fight image
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Demo Code

./spark-ec2 
--key-pair=spark-df 
--identity-file=//Users/code/Downloads/spark-df.pem 
--region=eu-west-1 -s 2 
--instance-type c3.xlarge 
--copy-aws-credentials launch my-spark-cluster

./spark-ec2 
--key-pair=spark-df 
--identity-file=//Users/code/Downloads/spark-df.pem 
--region=eu-west-1 -s 2 
--copy-aws-credentials login my-spark-cluster

curl icanhazip.com 
passwd rstudio 
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vars <- tail(read.csv('/root/spark-ec2/ec2-variables.sh'), 2)
colnames(vars) <- 'a'
vars$a <- as.character(vars$a)
for(i in gsub("export ", "", vars$a)){
  eval(parse( text = paste0(gsub("=", "='", i), "'") ))
}

filepath <- paste0("s3n://", 
                    AWS_ACCESS_KEY_ID, ":", 
                    AWS_SECRET_ACCESS_KEY, 
                    "@wow-dump/chickweight.json")
ddf <- loadDF(sqlContext, filepath, 'json')

ddf
head(ddf)
collect(summarize(m = mean(ddf$weight), group_by(ddf ,ddf$Diet)))
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./spark-ec2 
--key-pair=spark-df 
--identity-file=//Users/code/Downloads/spark-df.pem 
--region=eu-west-1 -s 2 
--copy-aws-credentials destroy my-spark-cluster
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