
Switching to Sampling..
...in order to Switch

Vincent D. Warmerdam - GoDataDriven
koaning.io - fishnets88
© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 1

What I'll talk about
1. Briefly compare stateless sampling vs. statefull sampling

2. Briefly discuss the general algorithm of mcmc

3. Briefly discuss the idea of sampling for inference

4. Discuss the switchpoint problem

5. Demo how to solve this via Pymc3

6. Mention some things to look out for in the future

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 2

Idea of Sampling:

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 3

Idea of Sampling:

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 4

Idea of Sampling:

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 5

Idea of Sampling:

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 6

Idea of Sampling:

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 7

Idea of Sampling:
This approach doesn't just work for , it actually works for a lot
of general cases too. Sampling might be a very useful to
discover stochastic patterns in a system.

I'll demonstrate a simple numeric application.

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 8

MCMC 101 Python
nums = np.random.normal(3, 1, 10)
start_mu = 3
stepsize = 0.1
samples = []
for i in range(5000):
 new_mu = start_mu + np.random.normal(0, stepsize, 1)[0]
 old_loglik = np.prod([stats.norm.pdf(_, loc = start_mu) for _ in nums])
 new_loglik = np.prod([stats.norm.pdf(_, loc = new_mu) for _ in nums])
 if new_loglik > old_loglik:
 start_mu = new_mu
 else:
 if np.random.random() < new_loglik/old_loglik:
 start_mu = new_mu
 samples.append(start_mu)

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 9

MCMC 101 Python
nums = np.random.normal(3, 1, 5)

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 10

MCMC 101 Python
nums = np.random.normal(3, 1, 10)

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 11

MCMC 101 Python
nums = np.random.normal(3, 1, 100)

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 12

"Thats great Vincent, but
what about applications?"

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 13

The Switchpoint Problem

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 14

The Switchpoint Problem
There is a point in time when something change a system. We
would like to find some algorithmic way of finding out when it
happened and what the change was to the system.

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 15

The Switchpoint Problem
I'll first explain a simple example where the system has 5
parameters; , , , , .

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 16

The Switchpoint Problem
Given a dataset we're interested in finding;

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 17

The Switchpoint Problem
Let's apply bayes rule.

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 18

The Switchpoint Problem
Let's apply bayes rule.

I know some information about .

For example; . Priors are useful!

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 19

The Switchpoint Problem
The other part is the part that we model.

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 20

The Switchpoint Problem
So that means we have the building blocks for;

This begs the question, why would we prefer to use MCMC
here?

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 21

The Switchpoint Problem
I can come up with three reasons;

• Sampling is a very general framework. Can be parallized
and take any shape.

• The search space in general isn't convex, so gradient
methods lose their guarantee.

• By sampling, we get an impression of the distribution over
all parameters; not just a mere MLE.

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 22

The Switchpoint Problem
import pymc3 as pm
basic_model = pm.Model()
with basic_model:
 mu1 = pm.Normal('mu1', mu=0, sd=2)
 mu2 = pm.Normal('mu2', mu=0, sd=2)
 sigma1 = pm.HalfNormal('sigma1', sd=2)
 sigma2 = pm.HalfNormal('sigma2', sd=2)
 switchpoint = pm.DiscreteUniform('switchpoint', 0, time.max())

 tau_mu = pm.switch(time >= switchpoint, mu2, mu1)
 tau_sigma = pm.switch(time >= switchpoint, sigma2, sigma1)

 y = pm.Normal('y1', mu=tau_mu, sd=tau_sigma, observed=x)
 trace = pm.sample(10000)

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 23

The Switchpoint Problem
This last mentioned trace variable can be used for plotting.

_ = pm.traceplot(trace)

Let's look at the results for this dataset.

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 24

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 25

The Switchpoint Problem
Let's now change the problem.

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 26

The Switchpoint Problem
adv_model = pm.Model()
with adv_model:
 mu1 = pm.Normal('mu1', mu=0, sd=4)
 mu2 = pm.Normal('mu2', mu=0, sd=4)
 sigma1 = pm.HalfNormal('sigma1', sd=4)
 sigma2 = pm.HalfNormal('sigma2', sd=4)
 switchpoint1 = pm.DiscreteUniform('switchpoint1', 0, time.max() - 1)
 switchpoint2 = pm.DiscreteUniform('switchpoint2', switchpoint1, time.max())

 tau_mu1 = pm.switch(time >= switchpoint1, mu2, mu1)
 tau_mu2 = pm.switch(time >= switchpoint2, mu1, tau_mu1)
 tau_sigma1 = pm.switch(time >= switchpoint1, sigma2, sigma1)
 tau_sigma2 = pm.switch(time >= switchpoint2, sigma1, tau_sigma1)

 y = pm.Normal('y1', mu=tau_mu2, sd=tau_sigma2, observed=x)
 adv_trace = pm.sample(5000)

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 27

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 28

The Switchpoint Problem
Combat the start of the trace by ignoring it.

_ = pm.traceplot(trace[1000:])

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 29

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 30

PyMC3
You can also retreive statistics.

> pm.find_MAP(model=adv_model)
{'mu1': array(1.3253008730440974),
 'mu2': array(0.0),
 'sigma1_log_': array(0.8639975314985741),
 'sigma2_log_': array(1.3862943591402144),
 'switchpoint1': array(224),
 'switchpoint2': array(224)}

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 31

The future
There's people doing this type of thing for neural networks.

Sampling this is crazy, so people sometimes resort to
variational inference. It's an interesting thought and you can
already start playing with it. Here is a blogpost from pymc3
contributor explaining how to use PyMC3 to train a neural
network for the mnist dataset via lasagna.

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 32

http://twiecki.github.io/blog/2016/06/01/bayesian-deep-learning/

The future
Outside of Pymc3 it seems like edward is another contender
for variational inference and probibalistic modelling.

If you're interested in just maximum likelihood; maybe check
out pomegrenate. If allows you to make hidden markov models
as well as general PGMs (though there currently is no support
for continous variables for general PGM).

If you're interested in other ways to do sampling; maybe check
out STAN or emcee. Maybe consider GP's!
© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 33

http://edwardlib.org/getting-started

