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What I'll talk about
1. Briefly compare stateless sampling vs. statefull sampling

2. Briefly discuss the general algorithm of mcmc

3. Briefly discuss the idea of sampling for inference

4. Discuss the switchpoint problem

5. Demo how to solve this via Pymc3 

6. Mention some things to look out for in the future
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Idea of Sampling: 
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Idea of Sampling: 
This approach doesn't just work for , it actually works for a lot 
of general cases too. Sampling might be a very useful to 
discover stochastic patterns in a system. 

I'll demonstrate a simple numeric application.
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MCMC 101 Python
nums = np.random.normal(3, 1, 10)
start_mu = 3
stepsize = 0.1
samples = []
for i in range(5000):
    new_mu = start_mu + np.random.normal(0, stepsize, 1)[0]
    old_loglik = np.prod([stats.norm.pdf(_, loc = start_mu) for _ in nums])
    new_loglik = np.prod([stats.norm.pdf(_, loc = new_mu) for _ in nums])
    if new_loglik > old_loglik: 
        start_mu = new_mu 
    else: 
        if np.random.random() < new_loglik/old_loglik:
            start_mu = new_mu
    samples.append(start_mu)

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 9



MCMC 101 Python
nums = np.random.normal(3, 1, 5)
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MCMC 101 Python
nums = np.random.normal(3, 1, 10)
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MCMC 101 Python
nums = np.random.normal(3, 1, 100)

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 12



"Thats great Vincent, but 
what about applications?"
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The Switchpoint Problem
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The Switchpoint Problem
There is a point in time when something change a system. We 
would like to find some algorithmic way of finding out when it 
happened and what the change was to the system.

© Vincent D. Warmerdam - koaning.io - GoDataDriven - fishnets88 15



The Switchpoint Problem
I'll first explain a simple example where the system has 5 
parameters; , , , , .
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The Switchpoint Problem
Given a dataset we're interested in finding; 
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The Switchpoint Problem
Let's apply bayes rule.
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The Switchpoint Problem
Let's apply bayes rule.

I know some information about . 

For example; . Priors are useful!
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The Switchpoint Problem
The other part is the part that we model. 
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The Switchpoint Problem
So that means we have the building blocks for; 

This begs the question, why would we prefer to use MCMC 
here?
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The Switchpoint Problem
I can come up with three reasons;

• Sampling is a very general framework. Can be parallized 
and take any shape.

• The search space in general isn't convex, so gradient 
methods lose their guarantee.

• By sampling, we get an impression of the distribution over 
all parameters; not just a mere MLE.
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The Switchpoint Problem
import pymc3 as pm
basic_model = pm.Model()
with basic_model:
    mu1 = pm.Normal('mu1', mu=0, sd=2)
    mu2 = pm.Normal('mu2', mu=0, sd=2)
    sigma1 = pm.HalfNormal('sigma1', sd=2)
    sigma2 = pm.HalfNormal('sigma2', sd=2)
    switchpoint = pm.DiscreteUniform('switchpoint', 0, time.max())

    tau_mu = pm.switch(time >= switchpoint, mu2, mu1)
    tau_sigma = pm.switch(time >= switchpoint, sigma2, sigma1)

    y = pm.Normal('y1', mu=tau_mu, sd=tau_sigma, observed=x)
    trace = pm.sample(10000)
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The Switchpoint Problem
This last mentioned trace variable can be used for plotting. 

_ = pm.traceplot(trace)

Let's look at the results for this dataset. 
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The Switchpoint Problem
Let's now change the problem. 
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The Switchpoint Problem
adv_model = pm.Model()
with adv_model:
    mu1 = pm.Normal('mu1', mu=0, sd=4)
    mu2 = pm.Normal('mu2', mu=0, sd=4)
    sigma1 = pm.HalfNormal('sigma1', sd=4)
    sigma2 = pm.HalfNormal('sigma2', sd=4)
    switchpoint1 = pm.DiscreteUniform('switchpoint1', 0, time.max() - 1)
    switchpoint2 = pm.DiscreteUniform('switchpoint2', switchpoint1, time.max())

    tau_mu1 = pm.switch(time >= switchpoint1, mu2, mu1)
    tau_mu2 = pm.switch(time >= switchpoint2, mu1, tau_mu1)
    tau_sigma1 = pm.switch(time >= switchpoint1, sigma2, sigma1)
    tau_sigma2 = pm.switch(time >= switchpoint2, sigma1, tau_sigma1)

    y = pm.Normal('y1', mu=tau_mu2, sd=tau_sigma2, observed=x)
    adv_trace = pm.sample(5000)
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The Switchpoint Problem
Combat the start of the trace by ignoring it. 

_ = pm.traceplot(trace[1000:])
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PyMC3
You can also retreive statistics.

> pm.find_MAP(model=adv_model)
{'mu1': array(1.3253008730440974),
 'mu2': array(0.0),
 'sigma1_log_': array(0.8639975314985741),
 'sigma2_log_': array(1.3862943591402144),
 'switchpoint1': array(224),
 'switchpoint2': array(224)}
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The future
There's people doing this type of thing for neural networks. 

Sampling this is crazy, so people sometimes resort to 
variational inference. It's an interesting thought and you can 
already start playing with it. Here is a blogpost from pymc3 
contributor explaining how to use PyMC3 to train a neural 
network for the mnist dataset via lasagna. 
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http://twiecki.github.io/blog/2016/06/01/bayesian-deep-learning/


The future
Outside of Pymc3 it seems like edward is another contender 
for variational inference and probibalistic modelling.

If you're interested in just maximum likelihood; maybe check 
out pomegrenate. If allows you to make hidden markov models 
as well as general PGMs (though there currently is no support 
for continous variables for general PGM).

If you're interested in other ways to do sampling; maybe check 
out STAN or emcee. Maybe consider GP's! 
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http://edwardlib.org/getting-started

