
PySpark of Warcraft
understanding video games better through data

Vincent D. Warmerdam @ GoDataDriven
1

Who is this guy

• Vincent D. Warmerdam

• data guy @ GoDataDriven

• from amsterdam

• avid python, R and js user.

• give open sessions in R/Python

• minor user of scala, julia.

• hobbyist gamer. Blizzard fanboy.

• in no way affiliated with Blizzard.

2

Today
1. Description of the task and data

2. Description of the big technical problem
3. Explain why Spark is good solution

4. Explain how to set up a Spark cluster
5. Show some PySpark code

6. Share some conclusions of Warcraft
7. Conclusion + Questions

8. If time: demo!

3

TL;DR
Spark is a very worthwhile, open tool.

If you just know python, it's a preferable way to do big data in
the cloud. It performs, scales and plays well with the current
python data science stack, although the api is a bit limited.

This project has gained enormous traction, so you can expect
more in the future.

4

1. The task and data
For those that haven't heard about it yet

5

6

7

The Game of Warcraft

• you keep getting stronger

• fight stronger monsters

• get stronger equipment

• fight stonger monsters

• you keep getting stronger

• repeat ...

8

Items of Warcraft

Items/gear are an important part of the
game. You can collect raw materials
and make gear from it. Another
alternative is to sell it.

• you can collect virtual goods

• you trade with virtual gold

• to buy cooler virtual swag

• to get better, faster, stronger

• collect better virtual goods

9

World of Warcraft Auction House

10

WoW data is cool!

• now about 10 million of players

• 100+ identical wow instances (servers)

• real world economic assumptions still hold

• perfect measurement that you don't have in real life

• each server is an identical

• these worlds are independant of eachother

11

WoW Auction House Data

For every auction we have:

• the product id (which is tracable to actual product)

• the current bid/buyout price

• the amount of the product

• the owner of the product

• the server of the product

See api description.
12

https://github.com/Blizzard/api-wow-docs/tree/ba5d65f6f2040841c1d2a4d5666e53dbec8a8f0f

Sort of questions you can answer?

• Do basic economic laws make sense?

• Is there such a thing as an equilibrium price?

• Is there a relationship between production and price?

This is very interesting because...

• It is very hard to do something like this in real life.

13

How much data is it?

The Blizzard API gives you snapshots every two hours of the
current auction house status.

One such snapshot is a 2 GB blob op json data.

After a few days the dataset does not fit in memory.

14

What to do?

It is not trivial to explore this dataset.

This dataset is too big to just throw in excel.

Even pandas will have trouble with it.

15

Possible approach

Often you can solve a problem by avoiding it.

• use a better fileformat (csv instead of json)

• hdf5 where applicable

This might help, but this approach does not scale.

The scale of this problem seems too big.

16

2. The technical
problem

This problem occurs more often

17

This is a BIG DATA problem

What is a big data problem?
18

'Whenever your data is too big to
analyze on a single computer.'

- Ian Wrigley, Cloudera

19

What do you do when you want to blow
up a building?

Use a bomb.

20

What do you do when you want to blow
up a building?

Use a bomb.

What do you do when you want to blow
up a bigger building?

Use a bigger, way more expensive, bomb

21

What do you do when you want to blow
up a building?

Use a bomb.

What do you do when you want to blow
up a bigger building?

Use a bigger, way more expensive, bomb

Use many small ones.
22

3. The technical
problem

Take the many small bombs approach

23

Distributed disk
(Hadoop/Hdfs)

• connect machines

• store the data on multiple disks

• compute map-reduce jobs in
parallel

• bring code to data

• not the other way around

• old school: write map reduce jobs

24

Why Spark?

"It's like Hadoop but it tries to do computation in memory."
25

Why Spark?

"Run programs up to 100x faster than Hadoop MapReduce in
memory, or 10x faster on disk."

It does performance optimization for you.
26

Spark is parallel
Even locally

27

Spark API

The api just makes functional sense.

Word count:
text_file = spark.textFile("hdfs://...")

text_file.flatMap(lambda line: line.split())
 .map(lambda word: (word, 1))
 .reduceByKey(lambda a, b: a+b)

28

Nice Spark features

• super fast because distributed memory (not disk)

• it scales linearly, like hadoop

• good python bindings

• support for SQL/Dataframes

• plays well with others (mesos, hadoop, s3, cassandra)

29

More Spark features!

• has parallel machine learning libs

• has micro batching for streaming purposes

• can work on top of Hadoop

• optimizes workflow through DAG operations

• provisioning on aws is pretty automatic

• multilanguage support (R, scala, python)

30

4. How to set up a Spark cluster
Don't fear the one-liner

31

Spark Provisioning

You could go for Databricks, or you could set up your own.

32

Spark Provisioning

Starting is a one-liner.
 ./spark-ec2 \
 --key-pair=pems \
 --identity-file=/path/pems.pem \
 --region=eu-west-1 \
 -s 8 \
 --instance-type c3.xlarge \
 launch my-spark-cluster

This starts up the whole cluster, takes about 10 mins.
33

Spark Provisioning

If you want to turn it off.
./spark-ec2 \
--key-pair=pems \
--identity-file=/path/pems.pem \
--region=eu-west-1 \
 destroy my-spark-cluster

This brings it all back down, warning: deletes data.

34

Spark Provisioning

If you want to log into your machine.
./spark-ec2 \
--key-pair=pems \
--identity-file=/path/pems.pem \
--region=eu-west-1 \
 login my-spark-cluster

It does the ssh for you.

35

Startup from notebook

from pyspark import SparkContext
from pyspark.sql import SQLContext, Row

CLUSTER_URL = "spark://<master_ip>:7077"
sc = SparkContext(CLUSTER_URL, 'ipython-notebook')
sqlContext = SQLContext(sc)

36

Reading from S3

Reading in .json file from amazon.
filepath = "s3n://<aws_key>:<aws_secret>@wow-dump/total.json"

data = sc\
 .textFile(filepath, 30)\
 .cache()

37

Reading from S3

filepath = "s3n://<aws_key>:<aws_secret>@wow-dump/total.json"

data = sc\
 .textFile(filepath, 30)\
 .cache()

data.count() # 4.0 mins
data.count() # 1.5 mins

The persist method causes caching. Note the speed increase.

38

Reading from S3

data = sc\
 .textFile("s3n://<aws_key>:<aws_secret>@wow-dump/total.json", 200)\
 .cache()

data.count() # 4.0 mins
data.count() # 1.5 mins

Note that code doesn't get run until the .count() command is
run.

39

More better: textfile to DataFrame!

df_rdd = data\
 .map(lambda x : dict(eval(x)))\
 .map(lambda x : Row(realm=x['realm'], side=x['side'],
 buyout=x['buyout'], item=x['item']))
df = sqlContext.inferSchema(df_rdd).cache()

This dataframe is distributed!

40

5. Simple PySpark
queries

It's similar to Pandas

41

Basic queries

The next few slides contain questions,
queries, output , loading times to give
an impression of performance.

All these commands are run on a
simple AWS cluster with 8 slave nodes
with 7.5 RAM each.

Total .json file that we query is 20 GB.
All queries ran in a time that is
acceptable for exploritory purposes. It
feels like pandas, but has a different
api.

42

DF queries
economy size per server

df\
 .groupBy("realm")\
 .agg({"buyout":"sum"})\
 .toPandas()

You can cast to pandas for plotting

43

DF queries
offset price vs. market production

df.filter("item = 21877")\
 .groupBy("realm")\
 .agg({"buyout":"mean", "*":"count"})\
 .show(10)

44

DF queries
chaining of queries

import pyspark.sql.functions as func

items_ddf = ddf.groupBy('ownerRealm', 'item')\
 .agg(func.sum('quantity').alias('market'),
 func.mean('buyout').alias('m_buyout'),
 func.count('auc').alias('n'))\
 .filter('n > 1')

now to cause data crunching
items_ddf.head(5)

45

DF queries
visualisation of the DAG

You can view the DAG in Spark UI.

The job on the right describes the
previous task.

You can find this at master-ip:4040.

46

DF queries
new column via user defined functions

add new column with UDF
to_gold = UserDefinedFunction(lambda x: x/10000, DoubleType())

ddf = ddf.withColumn('buyout_gold', to_gold()('buyout'))

47

OK
But clusters cost more, correct?

48

Cheap = Profit

Isn't Big Data super expensive?

49

Cheap = Profit

Isn't Big Data super expensive?

Actually, no

50

Cheap = Profit

Isn't Big Data super expensive?

Actually, no

S3 transfers within same region = free.
40 GB x $0.03 per month = $1.2
$0.239 x hours x num_machines

If I use this cluster for a day.
$0.239 x 6 x 9 = $12.90

51

6. Results of Warcraft
Data, for the horde!

52

Most popular items

 item count name
82800 2428044 pet-cage
21877 950374 netherweave-cloth
72092 871572 ghost-iron-ore
72988 830234 windwool-cloth
72238 648028 golden-lotus
 4338 642963 mageweave-cloth
21841 638943 netherweave-bag
74249 631318 spirit-dust
72120 583234 exotic-leather
72096 578362 ghost-iron-bar
33470 563214 frostweave-cloth
14047 534130 runecloth
72095 462012 trillium-bar
72234 447406 green-tea-leaf
53010 443120 embersilk-cloth

53

what profession?
based on level 10-20 items

 type m_gold
1 skinning 2.640968
2 herbalism 2.316380
3 mining 1.586510

Seems like in the beginning skinning makes the most money.
Note these values are aggregates, this number can also be
calculated per server for end game items for relevance.

54

the one percent

55

effect of stack size, spirit dust

56

effect of stack size, spirit dust

57

effect of stack size, spirit dust

58

market size vs price1

1 for spirit dust we check for every server that the market quantity is and the mean buyout

59

market size vs price

We repeat for every product by calculating it's regression
coefficient:

where is market size and is price. If < 0 then we may
have found a product that is sensitive to market production.

60

slightly shocking find

Turns out that most of these products have .

What does this mean? Are our economical laws flawed?

61

Conclusion
Spark is worthwhile tool.

There's way more things supported:

• machine learning

• graph analysis tools

• real time tools

62

Conclusion
Spark is worthwhile tool.

Final hints:

• don't forget to turn machines off

• this setup is not meant for multi users

• only bother if your dataset is too big, scikit/pandas has more
flexible api

63

Questions?

64

The images
Some images from my presentation are from the nounproject.

Credit where credit is due;
• video game controller by Ryan Beck

• inspection by Creative Stall

• Shirt Size XL by José Manuel de Laá

Other content online:

• epic orc/human fight image
65

https://thenounproject.com/
http://www.judao.com.br/8/wp-content/uploads/2013/08/WoW-Orc-vs-Paladin.jpg

/r/pokemon/

66

/r/pokemon/

Feedback:
• pokemon fans did not agree that my model was correct

• pokemon fans did agree that my models output made
sense

Why this matters:
• pokemon is relatively complicated

67

68

